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CHAPTER I
INTRODUCTION

Ground wind induced flow fields around surface;i- .: :::
obstructions such as buiLdingg, bridges and .other man-made 1
structures have lopg,beenlof,intergs; in structural design.::.
For many years wind loading has been. .the subject of studies
in various wind tunnels. Most of these studies, however,
have been related to specific. problems rather than to the: .
more general and systematic flow field investigation which
ban”provide a code of practice for the building engineer. i

More recently such fundamental investigations have
attained new importance through environmental considerations.,.
as well as through the many aerodynamical problems encoun-
tered in:the design of aixports for V/STOL aircraft or
helicopter ports in large metropolitan areas. Operating low
speed aircraﬁt between buildings in regions of steep velocity
gradients or large fluctuations through vortex fields or
recirculation zones is very hazardous. A clear under-
standing and detailed knowledge of the flow field around
typical buildings is therefore a necessary source of
information to minimize the dangers of these problems. The
need for analytical methods to predict local atmospheric
motions influenced by buildings or similar bluff surface

obstructions is then obvious.



In formulating an analytical model to completely-
describe this complicated flow situation, the complete
equations of motion must be considered. However, practical
methods for carrying out a solution of such equations are
limited to numerical approaches which are presently in the
development stage.:

Some of the more recently developed methods which
were quite successful shall be discussed here in brief.

‘ However, only very few methods incorporate the effects of
turbulence. Most of them are applicable to. laminar time-

. dependent. two- or three-dimensional incompressible viscous
flow problems with' various boundary conditions. One of
these methods, which uses pressure and velocities as primary
variables, and which can be applied to confined: flows as
well as . flows having free surfaces is the :"marker-and-cell"
(MAC) method developed by Harlow and Welch (1, 2]l at Los
Alamos. ' Certain marker particles are introduced into the

£flow calculation to indicate the respective fluid configu-

i i1.ration. ‘The flow equations which :are described :in Eulerain

space (full Navier-Stokes equations, incompressible). are
formulated in finite difference form, in both space and time
variables. The derivation of these finite-difference

equations is based upon the following sequence of events by

: lNumbers in brackets refer. to similarly numbered..
references in the Bibliography.

i S M e
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which the whole configuration is advanced from one step to
the next.

1. The #eloéity distribution is known at the
beginning of the cycle either from an initial
condition or from the previous cycle. :.:: .~

2. The corresponding field of pressure is: «l: i:n
calculated.

3. The components of acceleration are: calculated;
from these changes in velocity are computed:.-and
added to the previous values. A

Goslo 4. The marker particles are moved to new positions
according to the velocity determined for their
locations. : b I X
The method is capable of satisfying a free-slip or
no-slip condition at a rigid wall and a pressure boundary:
condition at a free surface. Computations have indicated
considerable numerical stability and comparisons with some
experimental results showed very close agreement.:.' However,
. finite difference approximations introduce truncation errors
that can obscure the effects of real viscosity and influence
the stability of the solution. If only the mean effects of
turbulence on a flow are of interest, such difficulties can
usually be avoided, because the effective turbulent vis-
cosity is often larger than the molecular viscosity and is,
therefore, not likely to be obscured by finite difference
errors. A method of this type, proposing'ZIP’différenéiné

[3] is presented by C. W. Hirt [4]. However, ZIP
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differentiaﬁing cannot be readily incorporated into the
marker-and-cell technique, since its variables are defined
at different mesh points.

R. S. Hotchkiss [5] quite successfully employs an
extension of the MAC method for his calculations of three-
dimensional flows of air and particles around structures.
The full nonlinear Navier-Stokes equations for incompres-
sible flow with buoyancy are solved. The effect of turbu-
lence is resolved through a constant eddy viscosity. The
method is capable of satisfying five different kinds of -
boundary conditions, e.g., inflow, outflow and periodic ' :ii::
boundaries, along with rigid walls that have either free-=
slip or no-slip conditions. In addition to the Navier-
Stokes equations, the time dependent heat equation is solved
to incorporate features of thermal buoyancy (Boussinesqg
approximation). The computer program also includes the
simultaneous solution of a transport equation in order to
determine distributions of particulate matter. The results
are displayed as three~dimensional perspective views drawn
by a computer. Similar equations, however, using a variable
eddy viscosity have been used by J. W. Deardorff [6] for his
numerical investigation of the idealized planetary boundary
layer. The nonlinear equations of motion are solved for the
ideal case of neutral stability, horizontal homogeneity of
all dependent mean variables except the mean pressure; No
buoyancy effects are considered. A discussion and details

-

of the numerical method are given in ([7].



Although it was possible in all these examples to
study full three-dimensional problems with methods such as
the MAC method, these calculations are still extremely time
consuming and require the largest computers now available.

A simplified marker-and-cell method . (SMAC) has. been given; by .
SMAC method is proposed by P. I. Nakayama.and N. C. Romero
[9] for the solution of incompressible transient flows that -
are almost three-dimensional. The equations of motion are

two-dimensional but contain functions that account. for the -

" effects of a third dimension. The method may also be used

for the simple incorporation of internal obstacles in. two-.
dimensional flows.

. Besides the MAC method and its numerous modifi-
cations, some other numerical experiments with a difference
model for the time-dependent Navier-Stokes equations have
been reported by Schoenauer [10]. He concludes that the:
space mesh size must bé inversely proportional to the
Reynolds number. - A coarse net produces a numerical- "turbu-
lence" which-tends to the physical turbulence as the mesh
size goes to zero. However, the existing computers are not
fast enough for. fluid flows which have Reynolds numbers in
the turbulent regime.

Similar to Hotchkiss [5], D. Djurié& and J. C. Thomas
{11]. apply .a numerical model (following Harlow and Welch [1]
and Deardorff [6]) to atmospheric boundary layer calculations,

especially to transport ‘and diffusion of gaseous air



6

pollutants in the vicinity of tall buildings. The equations
used in this model follow those derived by Ogura and
Phillips [12] in which the "anelastic" approximation is
utilized. 1In these equations the basic density p is
constant in the horizontal planes and varies only in height.
The Coriolis term is not included because of the small scale
of motion under consideration. Periodic boundary conditions
were used except for pressure, which had a slight decrease
in wind direction to provide a driving force which moves the
air.

R. B. Lantz and K. H. Coats [13] use a quite Car
different model for their three-dimensional calculation of
spread and dilution of air pollutants. Their mathematical
models are similar to the "Gaussian plume" models [14, 15,
16] and their extensions which can include topographic
effects [17, 18]. A numerical solution of the three-
dimensional material balances for pollutant flow and for the
air stream is given. The pollutant material balance
requires the solution of the three-dimensional convection-
diffusion equation. Wind flow over uneven surfaces or
around simple structures is calculated by numerically
solving an equation for the velocity-potential which is
modified such that it includes a variation of the horizontal
velocity with height (logarithmic or power law). The
numerical schemes used in the solution of the two balance
equations are said to be efficient ones requir;pg minimal

computer time. The mathematical description of individual



eddies downstream from obstacles is felt not essential to
the pollutant dilution problem. The increased dispersion of
the pollutant due to eddy formation is approximated by
increasing the eddy diffusity downstream of the obstacles.
There has long been a difference of opinioﬁ as to
which of the possible forms of the equation of motion is thé
most - suitable for numerical solutions. Some workers, as for
example, Harlow and Welch [1], prefer to retain the veloc-
ities and pressure as dependent variables. Others, such as
Aziz and Hellums [19] feel that it is advantageous to use
instead the vorticity and stream function as dependent
vériables. Gosman, et al. [20], share the latter opinion.
Their finite~difference model for steady two~dimensional
flows, as described by elliptical partial differential
equations, has proved to be very successful in a large
number of problems to which it was applied. The model is
capable of handling turbulent mean flows with variable fluid
transport properties. Several turbulence models such as the
Prandtl mixing length concept or a turbulence kinetic energy
model using the Prandtl-Kolmogorov hypothesis have been
employed. The computational procedure consists of solving
the differential equations for the fundamental conservation
laws of mass, momentum and energy which are complemented by
auxiliary relations for the transport properties. Because
of the established versatility of the model and because of
the generali%y of its framework, the model shall be used in

this investigation to study the turbulent flow with an
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atmospheric velocity profile over a bluff surface obstruc-
tion.

An alternative approach, approximating atmospheric
motioéns over surface obstructions has been cérried out by
Frost, et al. (1973) [21], in extending the concepts of
boundary layer theory. Their method was applied to the
specific geometry of a semi-elliptical cylinder. The
characteristics of atmospheric shear flow over a rough
terrain (disturbed boundary layer) are coupled with the
turbulent boundary layer equations using Prandtl's mixing
length hypotheses. Two approaches are presented to inéggﬁdu
porate the pressure field and boundary conditions which
exist within the large viscous region over the obstruction.
The first considers a region in the immediate vicinity of
the body in which the pressure distribution and outer
boundary condition on the velocity are computed from poten-
tial theory for flow over the elliptical cylinder. The
second approach considers a much larger region of influence;'
extending from the surface to the undisturbed flow at largé"
heights above the JSbstruction and uses a vertical pressure
decay function to blend into the undisturbed flow region.

The main conclusions drawn from the stﬁdy were:

1. Localized maxima in wind speed occur at the top

of the semi-~elliptical obstruction.

2. An increase in the elliptical aspect ratio

decreases the wind speed within th'le':f’bou"néiar"y""?"Y'X'""i

layer at the top of the ellipse and returns it



to the logarithmic distribution characteristic
of the undisturbed flow.

3. Increése in surface roughness afféct the flow by
decreasing the velocity in the boundary layer,
with the most pronounced effect occurring near
the surface of the smaller aspect ratio ellipse.

4. Reynolds number has a negligible effect on the
overall flow for the range of Reynolds numbers .
considered.

To investigate the validity of the Prandtl mixing
length theory for atmospheric flow in disturbed regions
Frost and Harper [22] extended the above approach, still
solving the boundary layer equations with equivalent boundary
conditions, but using the conservation equation for turbu-
lent kinetic energy (TKE) instead of Prandtl's mixing
length (PML) to model the effect of turbulence. Comparing
the respective flow fields predicted by the two models of
PML and TKE it is found that there is only a small differ-
ence in the predicted velocity profiles, primarily in the
regions of strong pressure gradients, caused through the
diffusion and the convection of turbulence kinetic energy
not accounted for in the PML concept. Howéver, while the
PML model does not provide any information about the turbu-
lence structure of the flow field, the TKE model gives
physically quite meaningful values of turbulence intensity

levels which are presented and discussed in the study.
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Although the method described has béen used ih both
CaSeé for the»flow over semi-elliptical geometries.only, it
canlgeherally be applied to any two-dimensional body shapé;
In the course of the following investigation it shall there-
fore be used for the calculation of the flow field over a
bluff surface obstruction. Again the Prandtl mixing length
concept will be employed in view of its reasonable results
and its numerical efficiency. The potential model, however,
used to compute the pressure gradient term and outer
boundary condition for the flow over the semi-elliptical ' ‘¢
geometry, will be replaced by a more sophisticated model of:i:’
inviscid shear flow over a bluff body.

This inviscid model, which in itself already repre-
sents an interesting analytical solution to the problem, is
described in Chapter II. 1Its governing equations are
developed and the required empirical input is discussed.

The application of this model to atmospheric flow conditions
is outlined and some typical results are presented.

Chapter III deals with the aforementioned boundary
layer approach incorporating the pressure field input from
the inviscid model of Chapter II. The governing turbulent
boundary layer equations, their numerical solution procedure
and the initial-and boundary-conditions are briefly reviewed.
Solutions are given for selected parameters characterizing
the undisturbed atmospheric velocity profile.

In Chapter IV the problem is then approached by

solving the Navier-Stokes equations following the method of
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Gosman, et al. [20]. Three different turbulence models are
presented and compared--the PML concept, Prandtl-Kolmogorov's
TKE model with a given turbulence length scale distribution
and a TKE model with a simultaneous solution of a transport
equation for the turbulence length scale. .. In contrast to .-
the boundary-layer approach where the equations of motion
are solved in terms of the primitive variables u, w and p,.
the governing equations are written in terms of the vor-
ticity w and the streamfunction ¥ and the other physical
properties involved. The equations are then expressed in a
common~s form, differing only by a source term peculiar to the
property which the equation represents. The transformation
of the differential equations into difference equations
which are solved by successive substitution, the incorpo-
ration of turbulence into the model as well as the
respective boundary conditions used are explained. Finally, .
some results for different parameters of the approaching
wind profile are presented and discussed in the remainder of

the chapter. -

IESk oY -TRN i el



CHAPTER II
INVISCID FLOW MODEL
I. INTRODUCTORY REMARKS

A suitable model for flow over a bluff body should
at least include the occurrence of flow separation and a
wake formation. For inviscid flow models this leads auto-
matically to a free-streamline approach. However, the
classical assumption of the free-streamline analysis_[zzk.is
that of a quiescent fluid on the inner side of the fre%iyid
streamline such that the free streamline remains one of
constant pressure and velocity. This results in a constant
pressure wake of infinite extent which is an inadequate
representation of the actual case. The model yields a base
pressure p, which is equal to that at infinity, whereas it
should really be Py << p_r thus leading to negative b;se
pressure coefficients CPb' The conventional free-st;eamllne
theory therefore has to be applied with moderation.

A somewhat different free-streamline theory for an
inviscid shear flow over a bluff body, featuring an upstream
separation bubble and a closed downstream wake region with
variable pressure, shall now be described.

Parkinson and Jandali [24] developed a simple theory
for a two-dimensional incompressible uniform flow external
to a bluff body and its wake. The desired flgﬂaseparation

12
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points are made the critical points of a conformal trans-
férmation to a region in which a surface source creates
stagnation conditions at the critical points. The stagna-
tion streamlines then transform to tangential separation
streamlines in the physical plane (Figure 2.1). The
position and the strength of the source is determihed by the
empirical requirements of the separation positioh and its
pressure coefficient.

This model was then used by Kiya and Arie [25] and
extéhded for their calculation to a separate flow past a
bluff body attached to a wall on which the approaching
turbulent boundary layer has been replaced by =a hypothetidai
inviscid uniform shear flow (Figure 2.2). 1In addition, it
utilizes a solution found by Fraenkel [26] to incorporaté
the formation of a corner eddy in front of the body. This
model admits analytical solutions and automatically yields
closed streamlines in front of the body which are geometri-
cally very similar to those observed in practice. Like the
Parkinson-Jandali model it includes a finite wake width and
a preséure distribution on the separation streamline which
decreases asymptotically towards the corresponding free
stream value at infinity. The theory requires input of four
enpirical parameters which depend on the geometry of the
body. These parameters are:

1. Location of the front face stagnation pbini.

2. Stagnation point pressure.

3. Location of the separation point.
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4. Separation point pressure.

In the present analysis the Kiya and Arie [25] model
has been extended further. The original model yields a wake
region which is finite in width, however, infinite in length.
Through the addition of a sink equal in strength to the
existing source, at a suitable downstream distance in the
transformation plane it is possible to close the wake and
thus eliminate the unrealistic feature of the original rear
model region. This involves an additional empirical

parameter, i.e., the location of the rear reattachment point.

IT. DEVELOPMENT OF GOVERNING EQUATIONS FOR

INVISCID FLOW OVER A FENCE

The details of the inviscid flow model shall now be
developed for the case of the flow over a fence.

We consider a two-dimensional incompressible,f
inviscid, steady uniform shear flow past a bluff body ASB as
shown in Figure 2.3. The velocity profile at a large dis-

tance from the body shall be
u* = Uy + k*y* (2.1)

where U} is the dimensional velocity at the wall and k* the

dimensional vorticity

au* av* . o 4
* = - — . . _ .
KE T ayF T xR . (2.2)

which is constant throughout the flow field. Introducing a
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stream function y* by

aP* oyp*
* = . * ]
“ oy*’ v X * (2.3)

where u* and v* are the velocity components of the velocity

vector a* in the x* and y* direction respectively, i.e.,

a* = u*i + v*? . (2.4)

The continuity equation

div a* =0

oradw
>

is then automatically satisfied. The vorticity vector {* is

given by

> W P .. .. OVE au* .. .- oo SR
Q* = curl q*; ?ﬂ- - ay* =" —Vzd)* . R , ; A(2'5)

and from Equation 2.2
VZp* = k* (2.6)

We can nondimensionalize the coordinates by a reference

length h*

X* *
and the velocities by a reference value U;ef

u* vk it U’o‘-". 3 (o0
u = o* H v = U—;——; U~0 = U—-r— (2.8)
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and thus rewrite:Equations 2.1 and 2.2 as

u_ = Uy + ky : . _ (2.9)
and

- ou _ v : : L »
kK = 3y 3% (2.10)

V3p = k (2.11)
where

*
Y = ﬁg;%—r—ﬁr (2.12)

is the dimensionless stream function. It can easily be

shown that Euler's equation of motion for steady flow

2

v %T - Ex curl E = =grad p (2.13)
or

du du _ _3p
U oax tv oy 9x

Vv ov _ _ 2

simply reduces to Equation 2.11 which is therefore the
governing equation of our flow problem.
On the boundaries, we require the following condi-

tions to be satisfied:



oo -

Y = const. T | | (2.15)
on the wall and solid surface and

B2 N

5y > Uo + ky; e+ 0 (2.16)

at large distances away from the body, If we subdivide the

stream function into two parts, i.e.,

b= ky? + ¥ | (2.17)
[1lmsy

then

V2p = k + V¥ _ - (2.18)

and from comparison with Equation 2.11 we get
V3y = 0 (2.19)

as the new governing equation with the transformed boundary

conditions

¥y + 'l ky“ = const. (2.20)

Y . Y
55 * Uos =0 (2.21)

at large distances away from the body.
Through the introduction of a function ¢ which is

related to ¥ by the Cauchy-Riemann relations



30 _ 3¥, 38 _ _23¥
5 = 5 5 = "% (2.22)

X

we can define a complex poﬁeﬂti;lw

W(z) = & + iy : t .;é R Jxkf.;;)
where “....luc .. S nteud edc owsulogows Baonginth o suval o of
z = X + iy T T i €A T Fa : (2.24)

describes our physical z-plane. We can now transform the
wall boundary A _A and BB together with the fence contour
ASB into the upper half of a new plane called the r-plane

N S

(see. Figure 2.3, page 17) where
z = £ + in Coon o DD S EuT I v T YL g J‘(’.z.:'zg')
and :

=g, =oHEd =ho=r2ar 0 T N ol s o e {2.26)

by using a suitable transformation

|
P!

<

2L £(z) 7 (2.27)
Under the assumption that this transformation behaves as

z ~ k1T + kp&nz + ks + 0(z™}) . (2.28)

b TE o Vi T ] L -
B v h eiee 3 . B T SR W e ST . I iie g wwl
C G ®IZLIIN 9 L LTS A R SRS I SR R WS SR FELy LIRS

Fraenkel [26] has-fouhd'é solution'télEquation 2.19 which
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satisfies the boundary conditions for Equations 2.20 and

2.21, i.e.,

b4 ?_Im(WI +_WII) _ (2.29)
where
WI = Uy * ki1 = L (2.30)
and
2a
Wip = o f r(E.0) 4 (2.31)
3a g - & -

In order to have a free streamline which originates from the
separation point S, extends in the downstream direction and
reattaches at R, we have to add to our stream function Y a
combination of sinks and sources which are appropriately
located. For this purpose a third complex plane, the 2-

plane is introduced by the transformation
a?

Figure 2.3, page 17, shows this plane with its
source-sink arrangement. In addition to the source at
X = aeB employed in Reference [25] a sink is placed down-
stream at the location X = ae".

The complex potential of the source-sipk system in’

this plane is given by



I_ {

Werg = Qon(z - aeP) + n(z - ae”®) - n(z - aed)

- n(z2 - ae-a) + C]
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(2.33)

If we add this to Equation 2.29 we get the stream function ¢

of the resulting flow as

1 2
5 ky + Im(WI + WII + WIII)

<
I

The complex velocity
w=u - iv

N
can then be determined as

P _ R . oY
u - iv = ky + m + i %

or with the Cauchy-Riemann relations
u - iv = ky + =
which is

de deI deII daz dz

Since the angle of intersection of the curve at S is

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

not

preserved in the z-plane the point S is the critical point

of the transformation, i.e.,

ol

Z _ e _
z = £'(0) 0

Qs

(2.39)
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In order that the velocity at this point remains finite, we

require from Equation 2.38 that

de + dWII + dWI.E. . 4z =0 (2.40)
dz dz az daz r=o °

The three complex planes are related by

N . N
RS S ST IR &

2
z =2 -3 » . | ) (2.41)

and

Coererr oyt BRI aranoT Assiogroe e s e bl norae
. :;=.:-..Z'r;..|_.-:§i SRR T RSN PRI LU 2> SUTIAI SIS PR IS (S ST SCRR *'Q}Jﬁv
ThcioEme oy FoLures,h oz e (BE L
To use Fraenkel's solution (Equation 2.19) one has to :
establish a relation between the z- and z-plane from ﬁé
Equations 2.41 and 2.42 and find the constants k; and k» in_

Equation 2.28. Kiya and Arie [25] have found W, and Wyp to

be:; . :
a?
Wp = Up o 8= U0 (2 +T) ; £ EE N S (2.43),,
PR L e E 3 BN e £ { 1 ¥ 1z

-k 2 _ 2 L - 2a

However, to close the separation region, WIII had to be

determlned dlfferently as already glven by Equatlon 2.33.

e R ) , . .
E BN i... I TS B LI RIS R oL B EDY LG E e

One can divide it into three parts

i s e .. N8 e Rz omaen g
TRAS STSLLU WmEsLEn e M O I EOICEe
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Wrrr = Wrpze * Wrrs t ¢ : | (2.45)
Wipp = SlFg(2) = Fg(2)] + C . (2.46)
where

EB(Z) = n(2 -'aeéfltfzﬁ(iu; Aé‘“f‘-;inyz"l;:" - (2.47)
Fs(Z) = 2n(z - aed) + an(z - ae™®) - an 2z | : (2;48)

In terms of these three complex potentials, the complex

'verqity in the physical plane can be expressed by Equation
YLy

2.38, where from Equations 2.41 and 2.42

az 72 '
dt - 7T —az - : - (2.49)
and

dz _ 2% + a?
ac - 7T — aZ (2.50)

Note, the latter expression has a simple zero at the sepa-
ration point 2 = ia. Q is now determined from Equation 2.40

as

4ka] cosh B * cosh § (2.51)

Q= 2na[Uo + =5 cosh 6 - cosh B

Substltutlng the foreg01ng results into Equatlon
2, 34 and rearranglng source terms glves the following

expression for the stream functlon w
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¥ =% ky? + Im

| | 2
2ka k Z - al™
[Uo + —;—J . T + ——{zz - ln[z—;—EJ ]

+ 8(r (2) - Fa(zn] +C (2.52)

The complex velocity from Equation 2.38

aw aw daw._ . .
- iv = = I, iz, dz) &t
u iv = ky + [at + 13 + 5 dc] = (2.53)
becomes
i o2&
- dv = i]_(é_ E R . r - 2a . s
A SR RERRER
+__2° 2(2 - a cosh B)
T Z2 -~ aZ|(%z2 - 2aZ cosh B + a?
- 2(Z - a cosh §) z22 -~ a2
22 - 2aZ cosh B + az]]iﬁ + aZ (2.54)

Since the nondimensional vorticity k is'constant'thfoughout
the flow field, Euler Equation 2.13 can be integrated to

givé Bernoullis equation

2
%T + p - ky = const. (2.55)
or
u2
2 2 -
. Y +p-ki=-5+p, - ki, . (2.56)

: - o =R
allowing the determination of the pressure coefficient
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c, = u? - (u? + v?) - 2k(y_ - ¥) ' (2.57)
which reduces on the body surface to
- ) —_ 2 2 . K .
Cpgurt = Us Vsurs i : (2.58)

Assuming that separatlon occurs at a glven base pressure
SRS T T S5 SR A RS R S S SR '
Cpb’ assumed constant over the whole rear side of the fence,

we can write ., o Ph AW
Cpp = U3 - Vg (2.59)

As is required through Equation 2.40, that the separation

velocity be finite, v

s is.determiﬂedff;om Equatjon 2.54 by

ivS ==lim(u - iv) o X
7 > ia e A '
vy »+ iZa ‘ _ ]
r > o T, ":;'if'%"i;ﬁ;if“'ﬁ S (2.60)
. By L'HOpital’'s rule. ;< ;. i-50 oo doeni e
AR S T S P T RS
vg = [vo v ] Loshirosand T e

III. REQUIRED EMPIRICAL INPUT

An inviscid shear flow model for the flow over a
fence, yielding a realistic upstream separation bubble and a

finite wake region has been formulated in the preceding

PR | Py £ . - i . : AL . P . .
o A, ° o - T ° s o N
gsection. The input of five empirical parameters is required

to complete the model. These_ are:
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1. The front face stagnation point location
max = 'Ymax
2. The front face stagnation point pressure

CPmax
3. The separation point location

zg = ivg
4. The separation point pressure
Cps = Cpp
5. The downstream reattachment point location
Zp = Xp
Using Equation 2.54 relationships between parameters 1, 3
and 5 respectively and Equation 2.58 for the remaining two

parameters, one obtains five equations to solve for the five

unknowns

Uo, k, B, 8§ and Vg

IV. DISCUSSION OF APPLICABILITY OF FENCE

MODEL TO RECTANGULAR BODIES

The flow over a rectangular block (see Figure 2.4)
can be treated similarly to the one over a fence, since the
external flow field is qualitatively the same as that for a
fence provided reattachment does not occur on the roof. The
upstream separation bubble is only insignificantly different
and the downstream separation must occur at the sharp
leading edge and thus at the same location as in the case of

the fence. A different empirical input for the separation
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base pressure and the downsﬁream feattachment point would
therefore account sufficiently for the new flow situation.
Some typical base pressure coefficients for different
building geometries are shoWn in Table 2.1. It is pointed
out that the rectangular block buildings generally have
higher Cpb values than that currently used for the case of

the fence.
v. RELATION TO ATMOSPHERIC FILOWS

Since the inviscid flow model is dependent on
empirical inputs, it is reasonable to postulate that if
these inputs are characteristic of bluff geometries in the
atmospheric boundary layer, then the resulting solutions
should reflect flow characteristics of the atmosphere.

One of the empirical input parameters discussed
previously, which seems amenable to this approach, is the
base pressure coefficient CPb‘ According to experiments by
Good and Joubert [27], pressures on the upstream face of a
normal plate located in a smooth-wall-boundary layer are

determined by a wall similarity law of the form:

uj )2 h*ug h*
Cop, = ~|gEg| |152 log ¥ - 147 + p¢[§;] (2.62)

Here P is constant for turbulent boundary layers with zero
pressure gradient and ¢ is a universal function of h*/&*

which is tabulated in their paper. When h*/8* is less than
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TABLE 2.1
TYPICAL BASE PRESSURE COEFFICIENTS FOR
DIFFERENT BUILDING GEOMETRIES

h T B Cpyp,
1.0 0 o -0.85
1.0 0.4 0.4 -0.6*
1.0 1.0 1.0 -0.5%
1.0 4.0 4.0 -0.3*

*Source: Peter Sachs, Wind Forces in Engineering
(New York: Pergamon Press, 1972).

C

Pp

width B
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0.5, as is the case for most atmospheric boundary layers,

¢ (h*/8*) is negligibly small. Thus,

2
u¥ h*u}
Cpb = - -UrT;; 152 10g v - 147 (2.63)

Now Cpb obeys a wall similarity law in the sense
that Cpb(U;ef/u:)z can be described as a function of h*u}/v*
only, for the case of the smooth wall.
| Applying this to the case of the rough wall, where

h*u%

*
— 2—{ (2.64)

the similarity law becomes:

2
ux h*
ref 0

Figure 2.5 shows a graphical representation of this equation
for several dimensionless surface roughnesses. Extending
the equation still further in order to relate to atmospheric

flows and introducing a geostrophic drag coefficient

ug

with G* being the geostropic wind, Equation 2.65 can be

written as:
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Crn. = =] 8% 2c2 152 log B - 147 | - (2 675
Pb Iy 9 zF ' T

From Csanady [28], the geostrophic drag coefficient Cg is a’

k o ¥
function of the Rossby number Ro==£—?ﬁrzi, i.e.,

2 _ .
Cg f(Ro) (2.69)

and hence one can rewrite Equation 2.65 as

_ G* 2 h*
Cpb = - [Ti.;- f(RO) 152 log ﬂ: - 147 (2-69)

It is proposed that the inviscid solution can thus
be related to the prevailing atmospheric condition by using
a Cpb value as an input, which is predicted from Equation
2.65 with known values of u} and z} or from Equation 2.69

with known values of G, Ro and z%.

VI. RESULTS OF INVISCID MODEL

The aforementioned model was applied to the fence
problem using the following empirical input-parameters

1. Front face stagnation point location

Ypax = 0.6 (2.70a}
2. Front face stagnation point pressure

3. Separation point pressure
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4, Downstream reattachment point location
Xp = 13.0 (2.704)
Conditions 1 and 4 were taken from Good and Joubert [27].

Condition 3 was determined from Equation 2.65 or Figure 2.5,

page 33, for the values

u}
u, = gz = 0.0625

ref
z, = 2 = 0.005 2.70
0 T B¥ . (2. e)

These four empirical input parameters Yoax?

x Cpmax, Cpb and

Xp lead to the following four calculated parameters:

Up = 0.7071

k = 1.0245
cosh B = 1.3132
cosh 8§ = 10.725 (2.71)

The streamline pattern computed on the basis of these wvalues
is shown in Figure 2.6 and an enlargement of the upstream
separation region in Figure 2.7. As there are only limited
experimental results available, especially from full scale
studies, the quality of this flow field description cannot
readily be determined. However, when compared with the small
scale experimental results of [27] very good agreement is
found, as can be seen in Figure 2.8.

Velocity profiles of the u-component for various x-

stations are shown in Figure 2.9. Here the simplification
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of the model to a constant vorticity flow field becomes
apparent in the almost linear velocity profiles. Neverthe-
less, the region of retarded flow upstream, the recircu-
lating separation bubble in frént of the fence and the
accelerated flow region in the vicinity of the fence are
qualitatively correct. This is also the case for the plot
of the velbéity gradient along various streamlines in
Figure 2.10.

In turn, the computed pressure distribution is
reasbnable. The almost exact agreement of the pressure
vari;tion along the front face of the fence with experiments,
which was already found for the infinite wake model [25], is
mainfained for the modified closed wake flow model. The
preséure'va;iation along given streamlines near the ground
and albné'the separation streamline is shown in Figure 2.11.
This pressure disgribution will be used as the imposed
pressure field infthe viscous turbulent boundary layer
approach to be described subsequently.

Relatihg the model to atmospheric flow conditions by
varying the base pressure coefficient ch according to
relafioh 2.65 but holdihg the remaining empirical input
parameters constant, the results displayed in Figure 2.12
are achieved. It is found that the maximum height hmax of
the fecirculation region behind the obstacle decreases with
growing friction velocity u, but increases for larger sur-

- face roughness z,.




3.0
—— ¥ =0.005
2ls |
2.0 I~ —_———— v=0,5
9
§
"'6‘ eveccsooes ve 1.5
-
8
™
b
9
2
S
1:0
0.0 \'~— =,.,\-hu.
-‘.. .:
‘-.o
| ,_'
-1.0 \‘JI
| [l 1 1 1
=15 ~10 -5 L 10 15 20

Figure 2.10.

Velocity gradient along different streamlines.

gprizontnl Distance x

41



Base Pressure Coefficient Cpp

Height y

{
[
[

13
=]

&

-6 -4 -2 0 2 4 6 8 10 12 14

Horizontal Distance x

~6 -4 -2 0 2 4 6 8 10 12 14
Horizontal Distance x

Figure 2.11. C, distribution along various streamlines.

(A 4



0.12
E '
» 0.0 | ' ////' .
; ~
3 / hu -2 -~
> -~
a ///’qnx-231 P
S o0.08 [ / -
It -
.:;. / ///
& / ,/’ Buax = 2.58

///
0.06 | -
-
-
-
-
”~

0.04 |-

0.02 |-

0.0 1 1 A (]

0.0 0.01 0.02 0.03 0.04 0.05

Surface Roughness 2,

Figure 2.12. Maximum height of recirculation region in dependence of the
parameters of the approaching wind.

198 4



44

Figure 2.13 shows the predicted velocity increase
due to the presence of the obstruction calculated at an x-
station of six obstacle heights downstream. UNF represents
the velocity profile which would exist at this particular
location in the absence of the obstruction, i.e., the
approach velocity profile as defined by Equation 2.l1. The
profiles for the velocity increase are given for various
base pressure coefficients, which can be related to the
atmospheric conditions with Equations 2.65 through 2.69.

In conclusion it can be said that this rotational
inviscid model for the flow over a fence, featuring an up-
stream corner eddy and a finite wake region is in good
agreement with experimental results in the wicinity of the
obstruction. It describes quite realistically the size of
the front separation bubble, predicts the pressure distri-
bution along the front side of the fence and determines the
downstream separation streamline enclosing the recirculating
wake region. Through the simplification to a constant
vorticity flow field, however, the far field representation
which returns to the assumed linear velocity as y + « is,
with the exception of the streamline pattern, not realistic.
One expects a logarithmic velocity profile in the atmosphere
and hence both the upstream velocity profile and the velocity
profile at y + « should have this logarithmic form. ?o
achieve more realistic far field velocity profiles a
boundary layer approach which will give a better approxi-

mation to the flow in a turbulent natural atmosphere is
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developed in the following chapter. The results of the
preceding analysis, however, become extremely useful in
defining the imposed pressure distribution required in

boundary layer analysis.



CHAPTER III

ANALYSIS OF ATMOSPHERIC FLOW OVER A BLUFF
SURFACE OBSTRUCTION BY THE TURBULENT

BOUNDARY LAYER APPROACH

To apply the concepts of boundary layer theory to
two-dimensional atmospherib flow, consideration is given to
a homogeneous terrain of infinite extent on which a bluff
surface obstruction or fence of height h* is located. The
inviscid flow field around such a fence was established in
the previous chapter. Far upstream of the obstruction the
viscous turbulent atmospheric motion is described by the

logarithmic velocity distribution

uj * *
Th = o 2y + z%
u ” ln[ z, ] (3.1)

where u¥ is the friction velocity defined in terms of the

surface shear stress Tg

2

u: = (3.2)

D‘.I-l
o ¥

and k the von Karman constant of value 0.35 to 0.4

I. GOVERNING EQUATIONS

The governing turbulent mean-flow boundary layer

equations for steady flow within the atmospheric boundary

47
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layer as derived in [21] are:

It . owr .
Ll P (3.3)
-— u* - * D* u*

W B sk g G-

@ -0 (3.5)

where overbar denotes an ensemble average and p% is a
constant density consistent with an adiabatic reference
state. The pressure p* represents the difference between
the total pressure and the hydrostatic pressure. It should
be recalled that, in addition to the conventional boundary
layer approximations, two other assumptions underlie the
above equations:

1. The atmosphere is neutrally stable.

2. Coriolis effects are negligible, which is a
reasonable assumption for the atmospheric
boundary layer below 30 to 50 m, see for example
Tverskoi [29].

The eddy viscosity, t*, may be related to the mean

flow through the Prandtl mixing length hypothesis in the

following way:

e* = 2%? (3.6)

with the mixing length L* as
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)

L* = (zg + Z*)K .(3'.7):.

It was already pointed out in Reference [21] that this
assumption.is not strictly correct in regions of 1argé floﬁ
curvature, but it should suffice in view of further assump-. .
tions imposed later in this report on the curvature of the

flow and the coordinate system used in the investigation.
II. _INCORPORATION OF THE INVISCID SOLUTION

When analyzing conventional boundary layer flow, the”
pressure gradient in Equation 3.4 is approximated by the
pressure variation along the zero streamline determined from
the inviscid flow solution for the respective body. This
approximation is justified through EQuation 3.5. Typical
pressure changes for the inviscid flow over a fence are
shown in Figure 2.11, page 42. When the pressure gradient
along the zero streamline is introduced into the boundary
layer equation for the bluff body, however, it may cause
flow separation which cannot be handled with the boundary
layer approximation. By successively introducing the pres-
sure gradients of streamlines further away from the body,
one can find the first streamline for which the corresponding
pressure gradient does not yield an upstream separation.

This streamline will be called the nonseparating streamline
wns‘ The pressure gradient along this streamline is assumeé'
to drive the flow in the present problem. This is believed

to be a reasonable assumption in view of the fact that the
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primary interest of this investigation is'directedjtoward_
the solution farther away from the 6bstfuction. | |
Another input from the inviscid solution into con- 
ventional boundary layer analysis is that a free-stream
velocity at the outer edge of the boundary layer is pre-=
scribed. In the present approach however, the internal
boundary layer produced by the surface obstruction has to
merge with the undisturbed atmospheric boundary layer and
its logarithmic velocity profile at-a sufficiently high
altitude. Letting the pressure gradient decay to zero in
the vertical direction merges the velocity profile smoothly
with the logarithmic one. Therefore, the form of the pres-
sure distribution introduced into the boundary layer

equations in previous approaches (21, 22] was given by

ds*()d{;;z*) - [gﬁg}gf*)]w ° q(z*) (3.8)

ns

where g(z*) is the vertical decay function. An initial
approximation of this function was given by the following

second order quadratic decay function:

1 for %; < 0.5
q(z*) = )
[2_27%,] for %;- > 0.5 (3.9)

In the current investigation this somewhat arbitrary

approximation has been replaced by a pressure decay derived
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from the inviscid model described in Chapter II. It must be
noted, however, that the vertical pressure distribution
bagsed on a linear velocity profile will not behave the same
in the far field as a logarithmic profile. Therefore, it is
assumed that the respective vertical decay functions are

proportional to their momentum flux, i.e.,

q(z*)log _ q(z*)lin

= (3.10)

U2 * z *

log(z ] Ulin(z )
With the decay of the linear solution given as

C_(z*) - Cp
qlz*), . = =& - (3.11)
lin Cp(wns) Cpoo

the resulting pressure distribution finally becomes:

- - C_(z*) = C U 2

dp* (x*,z*) _ [dp* (x*) . p Po | log (3.12)

dx* - dx* C W __) -¢C U, . *
wns p ' 'ns P 1lin

I¥I. COORDINATE SYSTEM

Since the pressure force driving the boundary layer
flow is determined along the inviscid streamlines over the
fence, the coordinate system must also be oriented along
these streamlines, resulting in the orthogonal system shown
in Figure 3.la. The curvature of this coordinate system is
small throughout the flow regime, except in the vicinity of

the upstream stagnation point and the downstream reattachment
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zone, where the slope of the zero streamline is dis-
continuous. It is argued, however, that at a location
somewhat removed from the region of large curvature the flow
will be driven by the pressure distribution along the non-
sepérating streamline. This is in agreement with Hunt [30]
as described later. Alternateiy one may look at the
approximatidn és being an analysis of flow over a solid body
defined by.the nonseparating streamline which envelops the
upstream and downstream separation regions. Since the
primary interest in the present report is the flow field
above the obstruction where aircraft operations occur, the
boundary layer approximation as posed here is expected to
provide meaningful results. Since the boundary layer con-
cept is generally a first order approximation to viscous
flow, neglecting the higher order effects produced by
curvature, it is not expected that the present boundary
layer analysis will provide accurate results in regions of
strong curvature, as for example, in the upstream vicinity
of the obstacle. On the other hand, there is little gain in
transforming the boundary layer egquations into curvi-linear
coordinates thereby introducing additional complications.

As a consequence the calculations have been carried out in
the Cartesian coordinate system (x*,2*) shown in Figure 3.1b.
The x*-direction is measured along the inviscid streamline
with the z*-axis extending perpendicular to it at each x*-
station. The resulting velocity profiles calculated in this

coordinate system are then assumed to exist perpendicular to
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the zero streamline in the physical plane. This is believed
to be a reasonable assumption for the following two reasons:
first, the good geometrical agreement of the separation
streamline of the inviscid solution with experimental
results, as can be seen from Figure 2.8, page 38, and,
second, that these geometrical effects of the recirculation
region on the flow now enter the equations through the
imposed pressure gradient.

Hunt [30] has shown that a first order analysis can
be justified if

H* en(8%/27

L* *° In@*/z%) (3-13)

where H* and L* are the characteristic height and length of
the disturbance and 6; the thickness of an internal boundary

layer calculated from

8% 8%
7% ° ooy o= 2C (3.14)

o

In the present approach H* and L* would be chosen as shown
in Figure 3.2, with H* being the maximum height of the
separation region h;ax as given in Figure 2.12, page 43, and
L* being the horizontal length of the combined upstream and
downstream separation region, also specified by the inviscid
solution. For a typical surface roughness of z% = 0.005 h*
one would then get from the above condition Equation 3.13

with 3.14:



Figure 3.2,

Outer Layer

Justification of first order analysis after Hunt [30].
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0.1693 << 0-6497
or for z}¥ = 0.05 h*
0.1693 << 0.5858

which are reasonably satisfied.

The no-slip condition implied in the Boundary layer
solution at the lower boundary causes the calculated
velocities to vanish along the zero streamline. This
becomes physically unrealistic where the zero-streamline
separates from the surface to become a free or dividing
streamline., Therefore, the following model for calculating
velocity profiles through the recirculating wake region
behind the fence is proposed in form of an approximate
solution using an integral technigque under investigation by
Kaul and Frost [31l]. Figure 3.3 illustrates the flow
regions considered and how they are matched with the present
boundary layer profile.

A polynomial expression
U* (x*,z%) = A(x*) % B(x*)z* + C(x*)z*? + D(x*)z*?® (3.15a)

is assumed with the following governing boundary conditions:

1. u*(x*,0) =0 at z* = z* (3.15b)
32u* 1 3p*

2. > = at z2* = z* (3.15c)
82*2 V*p‘z x* z*;—_-o G .
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- au SR s :
ou¥* erf
3. =% TE] at z* = z¥ o | | (3.1$d).
4. U (x*,z2}) = Ui . at z* = z*¥ (3.15e)
z¥
5. Jf u*(z*)dz* = 0 (3.15f)
(0]

Thus there are five equations for the five unknowns z,, A,
B, C and D. Condition 1 implies the no-slip condition at
the wall. Condition 2 assumes that the pressure distri-
bution along the surface is sufficiently well known that an
empirical correlation can be found to obtain 8p*/8x*|2*=0.
Conditions 3 and 4 state matching of the shear layer flow,

expressed as an error function velocity profile
T = 2 UA[L - erf(g%)] (3.16)

with the wake flow at the edge of the separated flow.
Condition 5 states conservation of mass in the recirculation
region, if the zero streamline is assumed to encompass the
rear separation bubble.

Further details and results of the incorporation of
this wake flow model into the boundary layer approach can be
found in Reference [31l] and shall therefore not be reported
here. The primary interest of this investigation is to
study the flow through which landing and ascending aircraft

would pass, i.e., the region somewhat above wns where the
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boundaty layer analysis described in the preceding is

expected to provide meaningful results.
IV. NUMERICAL SOLUTION -

..:The governing équations (3.3 through 3.5) were non-
dimensionalized by adopﬁing some characteristic length L*
and vélocify U* from the flow field over the fence. The
height, h*; of the obstruction was chosen to be the
characteristic length for this case. The characteristic
velocity is somewhat arbitrary and is assigned a value equal
to that of the undisturbed logarithmic velocity profile
evaluafed at three obstacle heights above the ground. The

resulting equations in nondimensionalized form are then

given by:
W |, oW _
xtsp =0 (3.17)
—%u ,  =98u__93p _ 1 3 du
UtV Tkt Re ﬁ{‘l“ =35) (3-18)
where

* *
X = B z = ¥ (3.19)
- u* - wW*
u = ﬁT; w = ﬁ-*— (3.20)

[ -] [+
-__;E_*_. T - E* (3.21)
p— pou*zl € -'\')'r .

[ ]

and Re denotes the Reynolds number



(3.22)

Expanding Equation 3.18, the equations to be solved are

given by:

du |, aw _

E{ + a—z- =0 ] (3.23)
=98 , 524 __95, 1(2’T 3T 3¢

ustw 5z - " 3x Re[322(1 + ) + 5z SEJ (3.24)

with the eddy viscosity model relating the turbulent motion

to the mean flow variables:

ax

3z (3.25)

€ = (29 + 2)2'<2

These three equations together with the boundary and initial
conditions form a closed set of nonlinear, parabolic,
partial differeﬁtial equations. They were approximated by
an implicit finite difference scheme. After linearization
of the inertia terms, the resulting tridiagonal matrix was
solved by an elimination routine. A detailed description is
given in Frost, et al. [21].

The lower boundary condition imposed a no-slip mean
velocity at the wall. In addition surface roughness effects
were incorporated into the numerical procedure by applying
the logarithmic velocity distribution to the two points
closest to the lower boundary, thereby implying a wall layer

of height-in-variant shear stress and friction velocity u,.
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It was assumed that the value of u, is given by:
u, = —<u (3) . (3,26);

3Az + .2z,
2n[———§7——J

where u (3) is the velocity at the grid point z = 3Az. Theiﬁ

velocity at grid point 2 can be calculated by the iogarithmic

law as:
T (2) =% R,n[m_z':_ﬂ} (3.27).

and u (1) will remain zero.

The upper boundary condition specifies.the velocity
to be equal to the initial logarithmic profile at 10 fence
heights above the obstruction. Thus the velocity profile,
which merges with that of the logarithmic profile due to the:
decaying pressure gradient, is matched with the undisturbed
flow at the outer boundary.

The velocity w in the vertical direction was obtained
by“integrating the.continuity equation (3.23) using the
above calculated velocity profile of u.

The choice of mesh size for the problem considered
was dictated primarily by the truncation error of the
difference equations and, in some cases, by the stability
criteria. A balance between the accuracy required in the
solution and the computing time necessary to meet these con= -
diﬁions hadéio be achieved. For these reasons plus some

numerical experimentation the following mesh sizes were
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chosen. A constant grid size in the marching (x) direction
of 0.1 the fence height h and a variable mesh size in the
vertical (z) direction incorporated through a parabolic
stretching function. Typical grid sizes ranged from 0.01
near the wall to 0.35 of the obstacle height at the upper
boundary. Computing times for a 20.0 x 10.0 flow region

were approximately four minutes on an IBM-360-65 computer.
V. RESULTS AND DISCUSSION

Numerical solutions of the turbulent boundary layer
equations have been carried out to assess the influence of a
nunber of different parameters on the solution. The fol-
lowing parametric effects are discussed in corresponding
order: (1) the influence on the solution of the pressure
variations taken along different nonseparating streamlines
(2) the effect of the quadratic pressure decay function

1

as compared to a more natural pressure decay based on the

ns’

inviscid model of Chapter II, and (3) the change of the
resulting flow field due to parametric variation of the
approaching logarithmic wind profile.

As to the first effect, calculations using the decay
function given 1n Equation 3.9 were carried out for the

it . streamlines

5
A

sectively. The « cvsical location as calcula 1 from

CVLE -7 the resulting pressure distribution
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can be seen in Fiéure 2.11,-page 42. Only small changes
occur in the computed velocity profiles for the different
solutions. It should be noted that the profiles présented
here and in the following are as obtained in the assumed
numerical coordinate system shown earlier in Figure 3.1b,
page 52, i.e., the profiles of\various x-stations are
plotted relative to the same origin (wna) and are not
shifted according to their actual location in the physical
coordinate system. Comparing Figures 3.4 and 3.5 one finds
that at the location of maximum velocity overshoot, at
X = 6.0 there is only a 1.2% difference in velocity: between
the wns = 0.05 and the wns = 0.2 solution, with the velocity
increasing toward the latter. It is apparent that the
gsolutions are relatively insensitive to the choice of
stréamline which lends credence to the assumption that the
far flow field is driven by the pressure gradient along the
first streamline for which separation does not occur.

The effect of the pressure decay based on the
inviscid model (Equation 3.12) as compared to the quadratic
pressure decay (Equations 3.8 and 3.9) was investigated |
among others for the wns = 0,05 streamline. The results are
shown in Figures 3.5 and 3.6. It can be seen that the
quadratic decay function dampens the overshoot and merges
the velocity profilé somewhat faster into the undisturbed
logarithmic profile than the inviscid decay function. The
slower decay of the inviscid model seems more realistic as

it distributes the disturbance better in the vertical
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direction. ' However, the difference between the two is small
and only a comparison with experimental data can show which
is the better decay function.

The combinations of parameters investigated in the
third group to ascertain the influence of the approaching
wind on the solution are tabulated in Table 3.1 and graph-
ically presented in Figure 3.7, which is similar to the
previously discussed Figure 2.5, page 33. The respective
data points (Cases 1-4) were selected in the following way:
four different surface roughness parameters z, ranging from
Zy = 0.005 to zy = 0.05 were chosen. With Equation 3.26 and
the earlier assumption that the reference velocity is that
at three obstacle heights above level terrain one can deter-
mine the corresponding dimensionless friction velocities u,

from:

*
u, = 2% = K (3.28)
U*

zn[3'° + zo]
Z,

The resulting input parameters Cpb introduced into the
inviscid model, determining the respective pressure vari-
ation, is then found from Equation 2.65. Table 3.2 gives a
complete list of the various empirical input parameters for
the inviscid model and the corresponding calculation
parameters. It should be noted, that ym, Cpmax and Xp were
kept constant in all fpur cases., The final results are

given in Figures 3.8 through 3.11. Comparing the various



68

TABLE 3.1
PARAMETERS FOR THE DIFFERENT DATA POINTS INVESTIGATED
Case Zy U, Cpb
Boundary Layer Approach
1 0.005 0.0625 -0.7920
2 0.010 0.0700 -0.7693
3 0.020 0.0792 -0.6978
4 0.050 0.0973 -0.4805
Inviscid Test Case
Set 2 0.005 0.0647 -0.8500

Equation 3.28:

u¥ - 0.4
U ¢ 2n[3'° + zo]
29

Equation 2.65:

Cpy, = -[ﬁ%i-iz[lsz 1og{§%} - 147]

ref
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TABLE 3.2

EMPIRICAL INPUT AND RESULTING CALCULATION PARAMETERS FOR

RESPECTIVE DATA POINTS

Case pr Uo cosh B cosh ¢ k
1 -0.7920 0.70711 1.3348 10.705 1.00830
2 -0.7693 0.70711 1.3436 10.697 1.00170
3 -0.6978 0.70711 1.3733 10.669 0.98091
4 -0.4805 0.70711 1.4827 10.566 0.91163
Ypax = 0-6s Cp o = 0.5, xp = 13.0
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velocity profiles for the two extreme cases 1 and 4, one
finds that for increasing surface roughness z, and friction
velocity u; there is a decrease of velocity overshoot of
about 7% at almost all x-stations over the recirculation
region downstream of the obstruction. Whereas the roughness
effect, i.e., decreasing velocity for increasing roughness
is dominant in the inner flow region, the influence of the
friction velocity, i.e., increasing velocity for increasing
u, dominates in the outer flow field. This tendency appears
realistic as the fuller approach velocity profile with
smaller z,, which carries more mass and higher momentum near
the wall can be expected to have the larger overshoot.

Plotting the profile of the velocity increase due to
the presence of the obstacle near the highest point of the
recirculating region, i.e., at x = 6.0 shown in Figure 3.12
one observes the same trend: Case 1, with the fattest
initial profile due to its lowest surface roughness, shows
the largest velocity increase.

This suggests that a high rise building, for example,
located in a downtown area of large buildings, i.e., high
surface roughness, will not experience as significant an
overshoot as the same building in a resort or residential
area surrounded by natural terrain or small houses having
low surface roughness.

| With regard to the overshoot in the velocity pro-
files, one would generally expect it to be somewhat smaller

in magnitude and to be distributed over a wider vertical
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range, as the full scale experimental data of Frost, et al.
[32] and partially the wind tunnel data of Good and
Joubert [27] indicate. A comparison with these experiménts
is given in Figures 3.13 and 3.14. It should be pointed out
that the former tests were conducted for a rectangular bloék
Ibuilding,'whereas, the latter were for a fence. In order to
make the respective velocity distributions independent of
the specific parameters of the approach velocityaand to
facilitate a comparison, all profiles are referenced to
their undisturbed upstream profile. In Figure 3.13 the
boundary layer profiles of the previous Figure 3.5 (qua-
dratic decay), page 65, and Figure 3.6 (inviscid decay),
page 66, are plotted together with a typical profile obtained
by Reference [32] in an atmospheric boundary layer flowing
over a block building. The horizontal location of these
profiles is one obstacle height downstream of the obstruction
face. The stronger and more confined overshoot region pre-
dicted by the boundary layer model probably results from the
fact that the wake is treated as a solid body. Because it
is intended to match the present boundary layer model with
the propoéed integral technique for the recirculation region
later, this was believed to be a reasonable temporary
assumption. It implied, however, that not only the velocity
decays to zero but also that the mixing length reduces to
L =x . 2, along the separating stréémline,_leading to a
relatively small eddy viscosity and low shear in this region,

not at all representing the highly turbulent free shear
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Figure 3.13. Comparison of velocity profiles at x = 1.0
obtained from boundary layer model and full scale
experiments [32].
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layer. The result is the larger virtually laminar overshoot
in the vicinity of the separating streamline. = High shear
;6uld not only reduce the overshoot in magnitude but also
épread it out further in the vertical direction. The mass
and momentum diffusion from the shear layer along the
separating streamline into the recirculation region cannot,
be taken adequately into account through the solid surface
assumption and thus lead to the increased overshoot.

On the other hand, comparison with the small scale
tests of [27] in Figure 3.14 shows a measured overshoot
which is even larger than that predicted by the theoretical
model, however, less rapidly decaying in the vertical
direction.

i1t should be noted here that the two experiments
differ in an important parameter. While the first tests
{32] were conducted in an atmospheric boundary layer where
the ratio of obstacle height h* to boundary layer thickness
6* is very small, i.e.,
|
the latter tests were conducted in a smooth flat plate type
boundary layer with
N =25
and hence should, because of the increased mass displacement

near the obstruction, produce a larger overshoot. Taking
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this into consideration, the predicted velocity profiles for
atmospheric flows should tend towards the first experiments.
If, in addition, it is realized that these tests are not
strictly two-dimensional because of the finite width of the
block building, but have three-dimensional character
allowing flow around the sides, thereby diminishing the
overshoot over the top of the building, the comparison with -
the calculated velocity profiles may look more reasonable.

Concluding this chapter, one might say that because
of the solid body wake assumption and the related simplifi--
cations, e.g., in the mixing length prescription, the
boundary layer analysis vields results which show overshoot -
regions in the velocity profiles that are somewhat higher
than expected. As there are not sufficient experimental
data available for direct comparison, only qualitative
conclusions can be drawn, following the trends pointed out’

in the foregoing discussion.



CHAPTER IV

ANALYSIS OF ATMOSPHERIC FLOW OVER A BLUFF
SURFACE OBSTRUCTION BY THE TURBULENT

NAVIER-STOKES EQUATIONS

The complete two-dimensional equations of motion are
applied to an atmospheric flow over a forward facing step,
as shown in Figure 4.1. Analogous to the previous approach
the atmospheric motion far upstream of the obstruction is
described by the logarithmic profile given in Equations 3.1
and 3.2. Again the atmosphere is assumed to be neutrally
stable and Coriolis effects are assumed negligible due to

the small scale of motion under consideration.
I. GOVERNING EQUATIONS

With the above assumptions the governing turbulent
mean-flow equations for steady incompressible flow can be
written as follows.

Momentum equation in x*~-direction

*
—— — — u —
g 2U* | =, du* _ 1 3p* . 9 [ eff[2 Bu*”

oX* oz* pg x* ox* | p¥ oxX¥*
5 |Meff(am* . dwt
T p* [Bz* * Sx*] (4.1)
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momentum equation in z*-direction

+ ¥ oz*

—, 0W* _ —, owx _ _1 3p* _ 3 |Meff(, aw*
o0z ¥ p* oz¥ az*

ux = =
b eff(ou* ow*
+ ax*[ o% [az* + 5;;}] (4.2)
and the continuity equation

du* dw* _ .
5x% tzw = 0 (4.3)
where overbars again denote the ensemble average. Analogous

to the turbulent boundary layer concept, turbulence is

incorporated through an "effective viscosity"

= * *
u* o+ oug (4.4)

*
Meff
which is composed of the molecular viscosity u* and a turbu-

t
not a property of the fluid. Its wvalue will vary from point

lent viscosity u;. Unlike u*, the turbulent viscosity u* is

to point in the flow, being largely determined by the
structure of the turbulence at the respective location.
Several methods, discussed in detail in the next paragraph,
are used to express the turbulent viscosity in terms of
known or calculable flow quantities. To eliminate the
pressure from the governing equations (4.1 and 4.2) the

stream function ¢* is introduced

— 1 Ju*
o = o ai’* (4.5)



85
= 1 Jy* _
e 3%: . (4.6)
together with the vorticity w*
dw* _ Bu*
Wt = 9 T ¥ | (4.7)

Differentiating the x*-momentum equation with respect to z%*,
the z*-momentum equation with respect to x* and subtracting

one from the other, one obtains after some rearrangements

) Y * 9 oYk 92
m[“’* 5‘2‘#] - m[‘”* B_;P{_;] = 5x*z(Magge %)

2
- sorr(utee w*) - S =0 (4.8)

P 9 * Ju* _ Jw* 52 du*
Se = 2[ axiaz;[ueff[ax* 5z*}] + ax*![u;ff az;]

32 dw*
- EETT[“éff 5;?]] (4.9)

Equation 4.8 is generally known as the vorticity transport
equation. It reduces thé two momentum equations (4.1 and
4.2) in the three vériables u*, w*, p*, to one equation in
the two variables w* and y*.

A second equation can be derived from Equation 4.7

with Equation 4.6

V2p* = —pkyt (4.10)
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known as the stream function equation. Gosman, et al. [20]
have shown that these new governing equations (4.8 and 4.10)
can be expressed in the common form of an elliptical partial
differential equation, suitable for simultaneous numerical

integration, i.e.,

) * 9 oY * d 0
olaiele 35 - stele 9] - sielo sieten)

- 5%;[b F%;[c¢]] +d=0 (4.11)

Here ¢ is the respective dependent variable Y* or w* and a,
b, ¢ and 4 are functions depending on the variable under
consideration.

After rearranging some terms, Equation 4.1l can be

rewritten, using tensor notation, as

— 00¢ 9 C)
* = -
ap*u¥ 3% ng{b ax§(°¢)J d (4.12)

Table 4.1 lists what the functions "a" through "d" must be.

TABLE 4.1

COEFFICIENT FUNCTIONS OF EQUATION 4.11 OR 4.12

$ a b c d

* -k
w* 1 1 Heff o
P* 0 1/p* 1l -w*
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Gosman, et al. [20] developed an algorithm for solving

Equation 4.11 which is used in this study.
II. TURBULENCE MODELS

Following the turbulent viscosity concept, there
remains the task of formulating u;, that is relating it to
some known gquantities of the mean flow. These resulting
auxiliary relationships can either be simple algebraic
expressions or more sophisticated differential equations.
Together with the governing equations (4.8 and 4.10) and
appropriate boundary conditions they form a closed set of

equations describing the flow for the problem of interest.

Mixing Length Model

Among the models which employ algebraic relations
for u{ is Prandtl's mixing=-length hypothesis (PML), already
known from the boundary layer approach. The hypothesis is
that the turbulent viscosity is equal to the local product
of the density, the magnitude of the mean rate of strain and

the square of a characteristic length scale of thke turbulent

motion, i.e., the mixing length 2*.

-2 -2 1/2
* = agw2| |30 3w
ug p*L {[Bz*] + [ax* (4.13)
The mixing length must be prescribed algebraically for the

whole flow field. In the present investigation its distri-

bution is made dependent on the shortest distance from the
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wall as indicated in Figure 4.2.

[k (z* + z%) for x* < 0;
z* < |x*|
L* (x*,2%) = |k (|x*| + 2z*) for x* < 0; (4.14)

|x*| < 2% < |x*| + h

in

k(z* - h* + z:) for all x*;

| z* > |x*|

Turbulence Kinetic Energy Model

We now turn to a model of turbulence where the
determination of “E requires the solution of a differential
equation for one property of turbulence. THe model was
first suggested by Kolmogorov [33] éndﬁPrandtl [34] and
differs from the previous mixing length model by the assump-
tion that u?*

t
fluid and a length scale. The level of turbulence is

is dependent on the level of turbulence of the

characterized by the mean kinetic energy of the velocity

fluctuations, defined as

k* = %(ETTT + VEVZ 4 w¥kTZ) (4.15)

where u*', v*' and w*' are the fluctuating parts of the
velocity components. The quantity k* is called the turbu-
lence kinetic energy (TKE). It is related to the effective

viscosity by

R I I L c, (4.16)
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where Cu is an empirical cénstant or function to be dis-
cussed later. k* is determined from a differential equation
of the same form as Equation 4.12, containing bonvectidn,
diffusion and source terms. It may be shown after some
lengthy algebra that such an equation can be derived from
Equations 4.1 through 4.3. For a detailed derivation see
Wolfshtein ([(35]. This transport equation for the turbulence

kinetic energy is

- * * o 1o &
pF Uk ok* _ o [P* QE_.] + s]t (4.17)

where Fi off 1s an exchange coefficient for the turbulence
r
kinetic energy defined in terms of a Schmidt number based on

the effective viscosity

u*
= __.otf (4.18)

Tk, eff
k,e O ,eff

The last term in Equation 4.17 represents "sources" and
"sinks" of turbulence; it consists basically of two parts,
one accounting for the rate of generation of turbulent
kinetic energy by the turbulent shear stress and another
representing the energy dissipation by viscous action,

deducible from dimensional analysis

du¥ dux au¥ (372
8¢ = ut 9x% * IxF | 5%% T CpP* ~¥ (4.139)

CD is another function to be determined empirically.
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In this model the length scale &4* is still pre?
scribed algebraically and is assumed to be equal to the
mixing length distribution of Equation 4.14.
The deté;ﬁinétion of the functions Cu and Ch still
poses some problems especially in cases where there are no
experimental results available. 1In terms of a turbuleﬁt

Reynolds number

_ p* . k*l/z o Q%

Ry = T (4.20)
one can express the functions as

1
C, = CUO + —
u Rt
C. = Cp, + o (4.21)
D Do R, .

i.e., when Rt is large we can expect the molecular viscosity
to have negligible effect on the transport process and the
functions take on constant values. However, when Rt is very
small and turbulence effects are negligible, the functions
tend to é:.
The "universality" of the constants Cu, and cDa' for
which many users of the model had hoped, could not be
échiéved; the values were found to be quite different
depending on the experiment under consideration. Wolfshtein

[35], modeling a jet impinging normally on a wall, uses



Cp, = 0.22; Cp, = 0.416

Cu = 1.07 CDO = 001

for their calculations of boundary layers near walls, as do
Rodi and Spalding [37] in their modeling of free turbulent

flows. Launder, et al. [44], however, employ

Cuo = 0009; CD0 = 100

in their numerical solution for free turbulent shear flows.
In view of the fact that there is only insufficient
experimental data available for the present investigation,
no attempt shall be made to propose new values for the two
constants in question. Instead, the influence of their

variation on the flow field shall be studied.

Two—-Equation Model of Turbulence

The next logical step from the turbulence kinetic
energy model descr.ibed in the previous paragraph is to
remove the uncertainty from the length scale distribution
especially in recirculating flow regions and to calculate 2*
rather than to prescribe it algebraically. Rotta [38] was
the first to propose a differential equation for the length
scale, deriving it from the Navier-Stokes equations.

Gosman, et al. [20] reformulated the equation into the

common form of their transport equation, thus, together with
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the k* equation they arrived at a two~equation model of

turbulence. The equation for &* is

— 38% 9 5a*

* * —3 ——— )
P} BT T [Pz,eff axas] + 8% (4.22)
with

du* ou*)ou*

* = oy 1 i * xpxl/2

5% “t[ax§ + Bxilaxg g% ° Cg * P¥k Cg (4.23)

being the "source" term of the turbulent length scale. It ’
consists of a positive contribution representing the rate of
growth of 2* as a result of the dissipation of -energy,
especially from smaller eddies and a negative contribution
accounting for the tendency of the shear stress to reduce 2%
by rupturing the large eddies. CB and CS are again func-

tions of Rt having similar behavior as Cu and CD in Equation

4.21, i.e.,

1
C, = Cg  + =
B 0 Ry
Cq = Cg, + 71— (4.24)
s Se " R :
Cg, and Cp, are constants to be determined empirically.
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IIT. NUMERICAL SOLUTION

Numerical Procedure

The mathematical problem posed in the previous
chapter has been solved by utilizing and extending the
numerical procedure of Gosman, et al. [20]. For a detailed
description the reader is referred to this reference. Only
a brief outline is given here.

The governing differential equations (4.8, 4.10,
4.17, 4.22 or 4.12 in general) are replaced by algebraic
finite difference equations which are obtained by integration
over finite areas rather than Taylor series expansion,
assuring a broader range of applicability especially in non-
rectangular coordinate systems. The integration of the
convection terms employs "upwind differencing," a one-sided,
rather than centered space differencing, where the scheme is
backward when the velocity is positive and forward when it
is negative. This formulation of the first order terms
gives greater numerical stability than can be obtained with
central differences. The remaining diffusion and source
terms, however, are expressed in a weighted central differ-
ence form.

Because of the nonlinear character of the resulting
finite difference equations they are solved by an iterative,

successive substitution technique.
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Physical and Numerical Coordinate System

The physical coordinate system was chosen such that
the origin was located at the lower step corner, with the
positive x*-axis pointing in downstream direction parallel
to the wall and the z*-axis directed normally to it aligned
with the front face of the step. (See Figure 4.1, page 83.)
In this coordinate system the flow regime considered extends
ten step heights in the upstream and downstream directions
and nine step heights in the vertical direction. The origin
of the numerical coordinates was situated at the lower left
corner of the flow field (Figure 4.3) with I indexing in the
x*-direction and J indexing in the z*-direction. In the
iteration process the field was swept from left to right
beginning at the wall and proceeding in the increasing J-
direction.

The distribution of the grid points is shown in
Figure 4.4. As indicated, a variable mesh was used which
graduafiy decreased in size near the wall and in the

vicinity of the step.

Boundary Conditions

Depending on the turbulence model under conside-
ration the number of differential equations to be solved
ranges from two equations in w* and y* to four equatiéns in
w*, Y*, ¥* and 2*. The number of boundary conditions
required for the respective case then changes accordingly.

Due to the elliptical nature of the flow problem, these

e e %+ e cmmm e e o nm e mnn s e a——— T n et e+ o e o ot it e —
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boundary‘conditions are prescribed along thé entire boundary
of the flow regime, i.e., following Figure 4.1, page 83,
along the inlet, the outlet, the upper and lower boundaries

(wall). All conditions are either of Dirichlet or Neumann

type.

Inflow. At the inflow a logarithmic velocity pro-

file of the form

u* * *
u* = - n ?‘—-z%-z-l (4.25)

is assumed. The ¥* boundary condition can then be deter-
mined by integrating the velocity profile over the inlet

height

K z*

uk* z* *
*
P (z*) = p* — f an 22 F 20 gu% (4.26)
H]

O

which yields

c
le-a-

* *
P*(z*) = p* [(z* + z:) Ln E—;%—il - (z* + zg)J + C (4.27)

where C can be determined such that y* = 0 at the wall.
Then
uj x . *
P (z%) = p* —K—[(z* + zg)[zn 2t 2. 1] + zg] (4.28)
0

The condition for the vorticity w* is
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wk q*
w* (z%) = %_;::T - %‘z.l,‘. (4.29)
where the last term can be calculated from the yY*-
distribution as
pU* _ 1 p2y* _ W
il v (4.30)

The remaining term of the inflow vorticity was

allowed to develop as part of the solution by approximating

PR b
§§¥? =0 (4.31)

and setting

dw* dw* | 1 3%y*
Ix* o* Jx*Z

(4.32)

2,3

The employed boundary condition for the turbulent kinetic
energy k* was derived from the constant shear assumption
underlying the derivation of the logarithmic law of the

wall.

TH(z*) = p*u*? = const. (4.33)

In terms of the Prandtl-Kolmogorov formulation (Equation

4,.16) one can write

172

Q

u* (4.34)

; ®
* Cuo az*

* * = x|k
Tt(Z) p*k

Equating the two and substituting £4* from Equation 4.14 and
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the velocity gradient from Equation 4.30 one obtains the

boundary-conditions for k* at the inlet as

.[ui]Z
k* = - (4.35)
CUO

The corresponding condition on the turbulence length scale

is then
L* = x(z2* + z:) (4.36)

Outflow. Two sets of outlet boundary conditions
were used. The first one assumes that the outlet location
is sufficiently far downstream of the step that an undis-

turbed logarithmic velocity profile has developed again.

u=out z* + zf - h*
Ln — (4.37)
K 2%

u* =

Y* can then again be determined by integrating u*

uj *
out z* + zp; - h*
Y* (z*) = p* ——E——[(z* + z%* - h*)[ln g - 1] + zg]

(4.38)

where ugout is calculated from the conservation of mass
through inlet and outlet, as no mass will be assumed to

cross the other boundaries,

vt = Ox (4.39)
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- H*

V4 =[ u*dz*

in

o

° ug H* + 27 B

* = —— * * 0 _ *
Vin < [(H + Zo) n T H. (4-40)
and
T* - u:out H* + z* h*) 3 H* + z: - h* H* h*

out K ( Zo n z¥ - ( )

(4.41)
the friction velocity at the outlet is
Gin K

Yxout — (4.42)

H* + z}

*
Z%

(H* + z% - h¥) 2n[ - hf] - (H* - h*)

Analogue to the inlet, the first term of the vorticity

boundary condition is determined from the y* distribution by

du* 1 a2y*

while the other w*-term is calculated with the afore-

mentioned assumption

2%
wa2 = 0 0 (4.44)
i.e.,
dw* _ W+ _ .1 azg* .
oX¥ T Px*¥ T Tp® Ix*2 (4.45)
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The remaining conditions on k* and * were similar to

Equations 4.35 and 4.36

) u_ 2 .
*
k* = [_EQEE] (4.46)
Ho
and
L* = k(z* + z%¥ - h*) (4.47)

The second set of outlet boundary conditions consisted of
less restrictive formulations for w* and yP*.
The assumption for yY* was that

92w*
56T = 0 (4.48)

or

2
T

x - W%
YIn T ¥In-1 t VIn-2
IN-1,J (Ax*) 2 3

= 2y

= 2
N,g X

which yields

Vin,g = ¥In-1 = VIn-2 (4.49)

For the vorticity it is assumed that its gradient in the

flow direction vanishes

dw*
'5-’-‘1-' 0 . (4.50)

The turbulent kinetic energy k was allowed to decay to the
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initial free stream turbulence level

k* = o (4.51)

Upper boundary. The location of the upper boundary

was assumed far enough out that velocity deflections caused
by the step were negligibly small. Consequehtly the stream-

line condition is
Yy* = const. (4.52)

i.e., no flow is crossing the upper boundary.
The vorticity condition imposed was that of a

vanishing gradient

*
%%T =0 (4.53)

which was also required for the turbulence kinetic energy,

however, in the horizontal or x*~direction

%g; = 0 or k* = const. (4.54)

The length scale was prescribed as given by Equation 4.14.

Wall boundary. As the flow is parallel to the wall

the condition for the stream function must be
y* = const. ' (4.55)

along the entire wall boundary.
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The vorticity boundary condition is more problem-
atic, as it essentially drives the flow. I£ cén be deri?ed
from a Taylor-series expansion of the stream function around
a neaf'wail p;int (ﬁé), An away from the wall, in terms of
the wall poiht (f)'conditions

oy * 122y (An*)2 + % iiﬂi, (An*)3
P

* - * *
Yp = ¥p * 3n¥F PAn M T 3 . LR

+ H.O.T. (4.56)

By the no-slip condition:

a *
E%T =0 (4.57)

dZy*

5 = —p*u* (4558)

Combining the last two expressions, one gets

doy* 9 [32y* du* | =
Sn*3 an*[an*z] = =P 5% (4.59)

Substituting these into Equation 4.56 and solving for w§

wX =

_20gp - ¥p) Bw*] An* (4.60)
P p T

(An*)2 - ok n¥). "3

The vorticity gradient at the wall was approximated by

dw* “Np T “B
[EE?JP = T An¥ (4.61)

yielding the second order vorticity formulation
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3(bky = VA

w =
(An*)2 > p*

P

- %w (4.62)
The turbulence kinetic energy specification along
the wall poses some problems. k* = 0 is incompatible with

the inlet and outlet conditions of

[u:]Z : .
in Cuo
and
2
uy
* = out
kout [ Cuo ] (4.64)

It was therefore assumed that k* obeyed Equation 4.63 also

along the wall, however, with u}¥ varying as

ou*
u:' = L* 3z *

wall wall

(4.65)

implying a logarithmic velocity profile from the wall to the

first interior node. Furthermore, at the wall,

ufloagy = K028 (-w*) (4.66)

or

K-oz*ow* 2
* = .
k¥ 11 {_Cﬁ—] (4.67)

The length scale was prescribed by
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L% = K"Z: (4-68)

Special treatment at step corner. The stream

function at the upper corner presents no problem. Like the
rest of the wall wa = 0., Similarly, ka and Qé are uniquely
prescribed by the lower boundary condition. But there are
several alternatives for the evaluation of wé. Referring to
Figure 4.5 one can apply Equation 4.62 either to the up-

stream side (face) of the step or to the downstream wall

obtaining respectively:

.o i 1,
U)C = wB = —m - -2— ww (4.69)
and
3y*
* = g% = e N Ll s
WA wa p*(Az*)z 5 wN (4.70)

There are also other possibilities. Seven different methods
are given in Roache [39], and most of these are investigated
in the present study; they are listed in Figure 4.5. Method
(1) represents an attempt to force separation at the corner,
assuming that the vorticity vanishes at a separation point.
Method (2) is based on the idea that, since separation
occurs tangentially to the upstream wall, upstream wall
evaluation should be used. Method (3) is an attempt to
average out both values, while method (4) is derived from

adding both values in a first order formulation. Method (5)
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arises from the argument that no continuity of w* can be
expected for the geometric singularity of the éorner.

When applied to the laminar flow case, obtained by
setting the turbulent viscosity equal to zero, all methods
functioned well and enforced separation from the corner.

The second formulation, however, was the most effective in
producing a well developed realistic separation region. For

this reason it was used in all subsequent calculations.

Accuracy, Convergence and Economy

Carrying out the numerical solution to the above set
of differential equations, a balance is required between the
convergence and accuracy and the amount of computing time
necessary to meet these conditions. ©One of the most
important factors affecting this balance is the grid spacing.
Therefore, the following sections will discuss the effects

of grid dimensions on accuracy and convergence.

Influence of grid size on accuracy. Accuracy is the

deviation of the numerical solution from the exact solution.
Unfortunately, this exact solution is unknown in most cases,
thus the accuracy is not easily determined. One possibility
to overcome this difficulty is to test the numerical pro-
cedure with a simple problem for which the exact solution is
known. This allows an estimate of the general accuracy of
the procedure. The optimum grid size, however, cannot be

transferred to another problem, as it strongly depends on
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the physical case under consideration, i.e., the size and
location of the occurring gradients.

Another way is to investigate the dependence of_the
respective sélution on increment size and find the grid size
for which a further decrease brings no further or at most
minor improvements in the solution. The grid size for'the
present analysis was essentially determined by this approach
with some additional compromise toward economy. The fol-
lowing discussion shall compare some results obtained from
the grid size actually used for all subsequent calculations
with results obtained from a grid with twice as fine a mesh,
Such a grid increases the computing time by a factor of
four. All calculations were carried out for a surface
roughness z% = 0.45 [m] and a friction velocity of u} =
0.75 [m/sec]l. Figures 4.6 through 4.1l1 show the vertical
vorticity and stream function distributions at three x*-
stations for the two different grid systems. In the first
four figures for the x* = 6.0 h* and x* = 0.0 locations
there are almost no differences in the respective w*=-
and Y*-distributions and consequently no improvement through
the finer mesh. The situation is slightly different a short
distance behind the step corner at x* = 0.8 h*. The stream
function, the better behaved function of the two, is again
almost identical in both cases. The vorticity-distribution,
however, shows differences. Even the finer mesh does not
quite predict the wall vorticity correctly, although it

shows the correct trend, indicated by the dotted line in
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Figure 4.11. Because of the expected flow separation at the
top step corner and the resulting recirculation region
behind it, the vorticity should reverse its sign in the
vicinity of the wall as one approaches the wall in the
vertical direction from the inside of the flow field. This
can best be demonstrated by looking at some results from a
laminar flow case obtained by setting the turbulent vis-
cosity to zero. Here the separation region is bigger and
thus more grid points fall into this region. Looking at
stream function distributions for two different x*-stations
downstream of the step corner in Figures 4.12 and 4.14, and
a vorticity distribution in Figure 4.13 corresponding to the
first x*-station, it is seen thaﬁ at x* = 1.6 h* the coarser
grid does not give negative streamline values near the wall,
which one would expect because of the separation from the
corner., The finer grid, on the other hand, produces the
expected negative y*-values. At x* = 3.0 h* the separation
region is large enough that even with the coarse grid
negative y*-values can be obtained near the wall. Conse-
guently the stream‘function plots for the two grids look as
shown in Figure 4.15, where (a) is the plot for the coarse
and (b) the plot for the fine grid. The two vorticity
distributions for the x* = 1.6 h* stations are shown in
Figure 4.13. They demonstrate how inside the separation
region the vorticity changes sign in the vicinity of the
wall even for the coarse grid. Because of the stronger

developed separation region in the laminar case, i.e., its
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(a)

(b)

Figure 4.15. Streamline plots for laminar flow; (a) coarse
grid, (b) finer grid.
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greater physical extent, vorticity wall predictions are
better than in the turbulent case where the separation
region is considerably smaller.

The above fine grid‘calculations were obtained from
solving a smali flow regime behind the step with fixed
boundary conditions, interpolated f£rom coarse grid calcu-
lations, except for the vorticity boundary condition at the
wall, which was allowed to develop as a new solution.

It should be pointed out that the w*-boundary con-
dition (Equation 4.62) is based on the linear vorticity
distribution. However, as can be seen from previous figures,
the vorticity is linear only in the very close proximity of
the wall. When a fine enough mesh is used, the point near
the wali is in this linear vorticity region and the wall
vorticity predictions are good. 1In either case, the vor-
ticity away from the wall is not very sensitive to mesh size
and is hardly influenced by the local inaccuracies at the
wall inside the turbulent separation region.

To summarize the findings of the foregoing investi-
gation, one might say that except for a small region in the
immediate vicinity of the wall at a short downstream section
behind the step corner the coarse grid produces reasonable
results, which can only be modestly improved by the fine
grid calculations requiring four times as much cdmpﬁtihg
time. The calculations show further that inaccuracies in
the vorticity wall predictions inside the turbulent sepa-

ration region on top of the step, do not propagate far
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inside the flow field but remain limited to a sméil area
near the wall. The external flow field remains largely
unaffected.

If one wishes to improve the predictions in the ﬁéar
wall separation region, however, one can choose from severél
possibilities. The first has already been mentioned duringl
the discussion, i.e., decrease of the grid size near the
wall until the variation of all computed quantitieé changes
approximately linearly between adjacent mesh points.
Unfortunately, this is not always easily accomplished.
Besides sizeable increases in computing time, convergence
problems can easily occur when unsuitable grid distributions
are used. More information on this subject is contained in
the next section dealing with convergence.

A second possibility is to leave the grid unaltered,
but abandon the assumption of linear variation of properties
near the wall, putting in its place some information about
the way in which the properties actually vary in the inter-
val in question. The relations containing this inférmation‘
are commonly referred to as "wall functions." Suitable
formulae for turbulent flows near smooth walls with zero
pressure gradient were derived from Couette flows by
Patankar and Spalding [40, 41] and Wolfshtein [35]. While
the former base their functions on the Prandtl mixing-length
concept, the latter makes use of the Prandtl-KoImogorov
hypothesis. In both cases, some of the important constants

and functions needed for the completion of the system of
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‘equations were deduced by reference to experimental data.

For rough walls, no wall functions have been derived
vyet. A paper by P. A. Taylor and Y. Delage [42] is a first
approach in this direction. For their cdmputétion of
atmospheric boundary layers with zero pressure gradient over
rough terrain they assume a constant flux wall layer having
a logarithmic velocity profile for the calculation of the
first interior grid point. The formulation of the wall
boundary condition for the turbulence kinetic energy
(Equation 4.67) is based on this assumption.

| The provision of a comprehensive set of wall func=-
tions valid for most situations of practical interest is one
of the prime tasks of curfent research in computational
fluid dynamics dealing with turbulence.

A third alternative, much less sophisticated,
follows the basic wall function concept to account for the
nonlinear behavior near the wall. Taking advantage of the
fact that in the present problem w* and y* are fairly
independent of grid size inside the flow field it determines

the location of the separating streamline, i.e., the second

zero ofiw*, by extrapolation from the interior of the flow

field. Figure 4.16(b) shows a typical turbulent flow yY*-
distribution through the separation region as obtained with

the coarser grid. With the assumption of linear variation

“the distribution between grid points follows the solid line.

This is a good approximation except for the small region

near the wall, where the estimated correct distribution is
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represented by the dotted line. The second zero of yY*, the
separation streamline, will always be neglected by the
linear approximation 1f it falls between the first two grid-
points. Because of the almost linear, slightly parabolic
behavior of the stream function closer to the wall, as seen
in Figures 4.6, 4.8, and 4.10, pages 110, 112, and 114, a
parabolic extrapolation was used for the location of the
second zero of the stream function, starting from the first
two interior ¢y values towards the wall. A typical result is
presented in Figure 4.17 which shows streamline plots for
the same flow case with (4.17(b))} and without (4.17(a))

extrapolation of the separating streamline.

Factors affecting convergence. While accuracy

greatly depends on mesh size, the convergence of the
iterative solution procedure heavily depends on the mesh
size variation. Recommendations from an accuracy viewpoint,
e.g., variable grid size near walls, have to be applied with
caution when laying out a suitable mesh. 1t has been
experienced by Gosman, et al. [20] and also in this study
that near walls nonuniform grid spacing between grid lines
parallel to the wall may cause divergence due to the
coupling of the vorticity and the stream function equation.
through the vorticity boundary condition (Equation 4.62).
The suggested [20] remedies listed below have been found
quite effective.

1. Near the wall the ratio of consecutive intervals
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between the nodes normal to the wall should be
kept as close to unity (i.e., uniform) as
possible ox otherwise below 1l.5.

2. The vorticity boundary condition (Equation 4.62)
should not be used explicitly at the wall, but
be incorporated into the general substitution
formula for the iterative solution (implicit
formulation for vorticity).

In the present investigation this last condition was not
necessary to assure convergence.

Another source of divergence is that even inside the
flow field large variations of the coefficients in the sub-
stitution formula may occur. This is true especially in the
turbulent kinetic energy solution cycle for the source term
Si (Equation 4.19). As shown by [20], the substitution
formula can in this case be rearranged through simple alge-
braic manipulations such that variations in a modified
source term stay small. It was found in the present study
that this approach may aliso be used for the substitution
formula of the turbulent length scale if its source term SE
(Equation 4.23) should cause divergence-.

A more commonly employed remedy against divergence
of the iteration process, although more time consuming, is
known as under-relaxation. Compared to the method just
discuss :d, it is more easily applied in the various cases,

but has the disadvantage of siowing down the iteration pro-

cess, thus increasing the computing time, depending on the
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degreé of under-relaxation. For the present problem there
was ﬁo need for under-relaxation. On the contrary, the
stream function, related to the vorticity by a Poisson type
equation (Equation 4.10), could be over-relaxed to SPeed up

the solution.

Termination of computation. The computation was

assumed to have converged to a sufficiently exact solution
if the difference of the dependent variable ¢ at point P

between successive iterations became small, i.e.,

¢y - on T

o

<e=0.01 - 0.05 (4.71)

max.

The superscript N denotes the nth iteration. ¢P rather than
¢max was chosen in the denominator as a scaling factor in
order to assure relatively good convergence also in areas of
small\d;_P values. For the average solution using the Two-
Equation model of turbulence with a 41 x 24 grid system
(Figure 4.4, page 97) this was normally achieved after about

50 iterations, taking about 7-1/2 minutes on an IBM-360-65

computer.
iV. RESULTS AND DISCUSSION

The results obtained -in the present study include a
laminar flow solution and three turbulent flow solutions,

the first of which uses the mixing length model, the second,
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the turbulent energy hypothesis with a prescribed mixing
length distribution, and the third, the Two-Equation model
(all described in Section II of this chapter). For the
latter turbulence model a parametric study of two paraﬁétefs
of the approach wind profile, u} and z¥*, was carried out.
Before these results will be discussed, some light shall be
shed on factors influencing the solution and affecting the
accuracy from a different viewpoint than that discussed in
the previous sections. 1t is referred to the empiricism
involved in the solution procedure entering not only through
a "proper" choice of coefficients C , Cp,s Cp, and Cg  in
Equations 4.16;, 4.19 and 4.23, but also through- the selec-

tion of "suitable" boundary conditions whose dominating

effects are not always recognized.

Pactors Influencing the Solution

Boundary conditions. ln many cases 1t is quite easy

to conjure up some kind of plausible boundary conditions,
but attempts to determine boundary conditions which are
equally realistic, accurate and stable can be highly
frustrating and often their selection ends with the compro-
mise that the first condition is neglected in favor of the
last two.

This is even more the case when conditions cannot
properly be formulated because the necessary empirical
information i1s not available. Unfortunately, the only way

around this problem is to extend the computations far enough"
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upstream or downstream that either realistic assumptions can
be made (vanishing gradients) or the influence from the
boundary conditions becomes negligibly small for the region
of interest in the flow field.

This problem arises not so much with the formu-
lation of the more familiar boundary conditions for vor-
ticity and stream function, which, with the exceptions
discussed earlier, are believed to be rather unequivocal,
partially because one can draw heavily from wind tunnel
tests or flow visualization experiments.

The problem appears, however, with the more unknown
variables k* and i*, with the formulation of the outflow
boundary condition being the most controversial. Should the
turbulence kinetic energy, for example, be allowed to decay
back to the original free stream value (Equation 4.52) or
should it exceed this value in dependence on the higher
local friction wvelocity (Equation 4.46)? Should it be
constant in the z*-direction or should its streamwise
variation be zero? Fortunately, none of the above conditions
posed any convergence problems so they could all be investi-
gated. The results are shown in Figures 4.18 and 4.19. It
should be mentioned that the stream function as well as the
vorticity pattern were hardly atffected by the above changes
in the k*-boundary condition and are therefore omitted. A
comparison between the turbulence kinetic energy distri-
butions of the first two cases shows that the influence of

the outflow boundary conditions
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Uy
k* = [___] 4.52
cuo ( )
and (b)
ok* _ 0
oX¥

is limited to a far downstream region about seven step
heights behind the step. Apart from this region the two
solutions are the same and, therefore, independent of their

particular boundary condition. The third case with

ulout 2
ke = |2t (4.46)
Ho

shows a somewhat different picture. The changesg brought
about by this condition seem bigger and reach farther into
the flow field than in the previous case. While with the
first two conditions the k*-decay in z*-direction is faster
before the step than it is behind it, the reverse is true
here. This behavior is partially a result of the upper
boundary condition 3k*/3z* = 0. ‘More realistically this
boundary condition should be 3k*/3x* = 0 which is equivalent
to k* = const. Substituting this. boundary condition into
the case presented in Figure 4.18(a), one obtains the dis-
tribution shown in Figure 4.20. Comparing the two one finds

hardly any or little changes.
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'In:concluSion, it can be said that in the present
study, except for the conditions chosen in Figure 4.19, pag;
133, the upper and outflow boundary conditions for k* do not
significantly influence the solution. The question if (a)
or (b), i.e., k* = const. or k* = £(z*), is the more
realistic'boundary condition becomes superfluous, because
apart from the immediate vicinity of the boundary they gave
the same results. For this reason and the fact that pre-
scribed boundary values give generally better convergende
than normal gradient type conditions, the k*-~boundary con-
ditions of Figure 4.20 were mainly used in the following
computations. Similar arguments hold for the boundary

conditions of the turbulence length scale 1%.

Empirical coefficients. It was already pointed out

earlier that the empirical constants appearing in Equations
4,19 and 4.23 are no universal constants, but depend on the
particular flow case under consideration. It is common
practice to determine these constants in a preliminary
evaluation by applying the governing equations to simple
flow situations such as Couette flows [35], flows with
homogeneous turbulence behind a grid [36] or turbulent
boundary layers in local equilibrium where the generation of
turbulence at any point in the flow field is balanced by the
local dissipation [36]. To achieve closure, the relations
found this way will then have to be supplemented with infor-

mation gained from experimental data. However, if
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exberimental results are not available, there is little hope
for an exact determination of the constants and the ébove
prath has to be abandoned.

Instead, we shall proceed in a different fashion and
shall look at the individual constants and examine how their
variation effects the solution. Also, a trial set of |
"universal" constants deduced from an early proposal of
Spalding [43] for a Two Equation model actually using length
scale as the second turbulent transport equation will be
tested. Finally, a set of preliminary constants will be
selected as a result of the foregoing investigation.

Table 4.2 gives a summary of the individual sets of
constants reviewed. Case 1 is the reference solution.

Cases 2 through 6 represent attempts to assess the
respective influence of variations in the effective vis=-
cosity (AC, ), in the turbulence kinetic energy dissipation
rate (ACp,), in the effects of length scale stretching
(ACSO) and of the length scale breaking (ACBO) on the
solution. The investigation included the survey of the
respective y*, k* and i¥ dlstributions,

The results are shown in Figures 4.21 through'4.28.
The turbulence kinetic energy distributions have been non-
dimensionalized with the turbulence kinetic energy of the
undisturbed approach flow and for easier comparison the
turbulence length scale variations for the different cases
are presented in a single figure (4.28) where only the

respective lines of constant i* passing through one and the



138

TABLE 4.2

SET OF EMPIRICAL CONSTANTS USED IN  TRIAL‘CALCULATIONS

Case Cu, CD0 Cso CB0
1 1.0 1.0 1.0 1.0
2 0.1 1.0 1.0 1.0
3 1.0 0.1 1.0 1.0
4 1.0 1.0 0.1 1.0
5 1.0 1.0 1.0 0.1
6 2.0 1.0 1.0 1.0
7 1.74 1.18 0.27 0.14
8 1.0 0.1 0.27 0.14
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same upstream point P are plotted. Case 1, the reference
solution, with all constants set equal to unity shall not be
furthe: discussed at. the moment. We shall return to this
solution later.

- In case 2 with C,, = 0.1 for which no figure is
shown, it was intended in Qiew of Egquation 4.16 and the
first term on the right side of Equation 4.19 to cut down
the turbulence kinetic energy production. This was easily
achieved, however, the amount of reduction was too large.
Everywhere in the flow field k* was smaller than the
approach condition of unity, implying that the step would
reduce turbulence. A reasonable reduction should be
obtained for a value of Cuy, only slightly smaller than one.

An increase in k* was obtained in case 6 (Figure
4.24) with cuo = 2.0. Compared with the reference solution,
a doubling of C;, produced a maximum k* about four times as
large.

The turbulence kinetic energy levels should also
increase if the dissipation rate is diminished, thereby
increasing the net-production {Equation 4.19). This was
done in case 3 by setting Cp, = 0.1. The resulting k*-
distribution (Figure 4.22) has a maximum of about 3-1/4
times that of the reference case, which like case 6 is
unrealistically high.

The attempt to decrease the length scale stretching
contribution (Equation 4.23) by reducing CS0 to 0.1 in case

4 failed, because the numerical procedure diverged.
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However, decreasing the length scale breaking con-
tribution with Cg, = 0.1, thus increasing the net 2*-
production and the k*-generation (case 5) had a similar
effect to decreasing the dissipation in case 3. The k*-
levels rose in the maximum to about 3-1/2 times the refer-
ence values.

Thus, there are four effective means to increase the
turbulence kinetic energy levels:

1. 1Increase Cy .

2. Increase Cs,-

3. Decrease Cp,.

4., Decrease C,-

Reducing the turbulence kinetic energy requires opposite
measures but from the experience with cases 2 and 4 we know
that these have to be applied with greater moderation.

In the above trials only one of the respective
constants was changed at a time to test the individual
effect; but due to the coupling of the governing equations,
changes of several parameters at a time can have quite
different effects than can be estimated from the individual
behavior and a more systematic investigation is required.

However, we shall restrict ourselves in the current
study to the above cases and will only, out of curiosity,
try Spaldings [43] coefficients (case 7). The resulting k*-
distribution is as high as some of the previous cases
(Cu0 = 2.0). This is probably a result of the relatively

large value for CUo'
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Other researchers from the same group of Gosman,
et'ai.'f20] at the Imperial College [36, 37] later used much
lower valueslfor the constants in the k*-equation and these
values were also tried, case 8. The constants for the 2*-
equatioh'from [43], i.e., Cg, = 0.27 and Cg, = 0.08 Cy, were
stiil retained, however.. Figure 4.26, page 144, shows the
corresponding k*-distribution, which surprisingly enough is
élmost identical to the one in case 3 where C; and Cp had
the same values, though.different'coefficients for the *-~
equation were used. It seems that the influence of Cuo and
Cp, dominates the influence of the coefficients in the
length scale equation.

Until this point we have only looked at the turbu-
lence kinetic energy distributions, but the goodness or
physical reality of a solution is probably better recognized
from the stream function distribution or even the length
scale plot.

It is interesting to note that in the respective
stream function plots there are hardly remarkable changes,
except for the cases 1 and 6 which are the only ones pro-
ducing a noticeable separation from the corner.

It is, therefore, not without reason that the length
scale distributions in Figure 4.28, page 146, for these two
cases are different from thoée of the remaining cases. They
are not only different, but more important physically more
meaningful. This insofar as it seems quite correct that 2%

decreases as one approaches the step parallel to the wall,
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due to the acceleration in the flow field, stretching the
vortices or due to the breaking of the larger eddies by the
increasing shear.

It can be seen in Figure 4.27, page 145, that closer
to the wall the reverse is true. Here the increase of &*
along a line of constant height represents the dissipation
of energy from smaller eddies and the formation of larger
eddies due to the deceleration of the flow which finally
results in the formation of the front separation region.

A similar phenomenon should occur near the upper
separation region in those cases where separation occurs
(cases 1 and 6). 1t seems realistic that after the region
of decreasing 2£* in front of the step a region of growth of
2* should develop because it is essential for the top
separation or recirculation region to form that energy is
dissipated from the smaller eddies into this region of
larger 2%,

This estimated correct behavior in the L*=-distribution
is predicted only in cases 1 and 6, which from this view-
point seem to be the most realistic. They are also the only
ones to create a top separation region in the p*-plot which
is experimentally known. In case 6, however, the turbulence
kinetic energy distribution was very high, and not as
realistic as for the reference case.

For these reasons it is believed that case 1, where
all "empirical" constants are set equal to unity, presents a

physically meaningful description of the fiow problem under
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investigation. Therefore, it is recommended that until
suitable experimental results are available to redefine the
values of the individual constants, reasonable realistic
predictions can be expected with values of unity for these
constants, which were used throughout all subsequent

calculations.

Comparison of Different Models

Before looking at the results of the three turbu-
lence models we shall take a brief look at some results of a
"laminar" solution, which were obtained in the early stages
of the program checkout, when the computer code for turbu-
lent flow with the appropriate boundary conditions was
tested with the turbulent viscosity by set equal to zero, to

save computing time.

Laminar solution. As already indicated above we are

not dealing with a truly laminar solution because of two
reasons: First, the inflow and outflow boundary conditions
for the stream function and the vorticity were based on the
same logarithmic approach velocity profile used in the
subsequent turbulent cases. A parabolic power law profile
would have been a more suitable condition. Second; the

occurring Reynolds number based on the step height

u*hx*
_ n
Ren >

(4.72)

where
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. *
h*"‘Zo

® B TTEE (4.73)
0

of 3.93 x 10° lies certainly outside the laminar flow regime.
Therefore the "laminar" solution would probably better be |,
called "guasi-laminar," in the sense that only the laminar
or molecular viscosity is used for the calculation of a flow
field which should actually be turbulent. Although one may
question the validity of the solution under these circum-
stances, it exhibits some interesting features and - shows
typical laminar behavior when compared to some of the later
turbulent solutions.

Figures 4.29 and 4.30 show the streamline distri-
bution and a plot of the velocity profiles in the vicinity
of the step. The laminar character of the flow can best be
recognized by taking a short look at one of the subsequent
turbulent solutions, for example Figure 4.31, and comparing
the two solutions. We know from experience that laminar
flow favors separation, while turbulence tends to suppress
it, or leads to fast reattachment of the flow. The same
trend can be observed here. In the laminar solution the
flow ahead of the step separates earlier than in the turbu-
lent case. In general, the disturbance caused by the step,
recognized by the deflection of the streamlines, is felt
much further upstream by the laminar flow than it is by the
turbulent flow. While separation from the upper step corner
is strong in the laminar case with the separation region

extending far downstream, reattachment occurs &dlready a
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short distance behind the upper step corner in the turbulent

case.,

Comparison of different turbulent solutions. Results

for the three different turbulence models employved are shown
in Figures 4.31 through 4.36. A streamline pattern for the
PMIL model, a streamline distribution and the turbulence
kinetic energy contours for the TKE model and finally a.
streamline pattern with turbulence kinetic energy and length
scale distributions for the Two-Equation model.

From the respective streamline distributions it
seems at first glance that all three solutions give approxi-
mately the same answers. However, this is deceiving as
inspection of the remaining figures indicates and it is
therefore appropfiate to mention that the streamline pattern
is not really a sensitive indicator of the correctness of
the turbulence model. It is thus more informative to look
at the turbulent quantities iike turbulence kinetic energy,
shear stress or effective viscosity, where the last two can
readily be compared in all three solutions.

In Figureé 4,37 and 4.38 we see the individual
effective viscosity predictions along the upper step wall
for the near wall nodes as well as for the surface itself.
Although measurements of shear stress near reattachment are

not completely reliable, it is fairly well known that the

surface shear stress
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T* = p* u*
wall eff 3z* wall
and thus with it the effective viscosity rises rapidly after
reattachment. However, as near the reattachment point the
mean velocity gradients are low, the PML model with

Equation 4.13 likewise predicts iow values for u;ff or “{-
Surprisingly enough, the results of the TKE model are little
better and only the Two-Equation model follows the expected
trend.

The weakness of the PML model with Equation 4.13
lies not only in the incorrect implication that u; vanishes
whenever the mean velocity gradients are zero, but more
generally in the fact that “E is assumed to ‘depend only on
local flow properties. We know, however, from experience
that the local level of velocity fluctuations is determined
not only by the events of the point in question, but also by
influences which have originated some distance upstream.

For instance, the high level of velocity fluctuations at the
above reattachment point originates from a highly turbulent
shear layer issuidb from the upper step corner. It is
important that this nonlocal character of turbulence is
taken into account.

The fact that the TKE model incorporates an addi-
tional transport equation for k* permits account to be taken

of the influence of neighboring regions on the local turbu-

lence energy. However, as seen in Figure 4,37 and also
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reported by [44], a TKF model without a length scale trans-
port equation produces results that for wall boundary laYefs
are only insignificantly better than those obtained with
PML models. To show how difficult it is to make an |
accurate guess for the length scale-disﬁribution éntering
the TKE model, reference is made to an 2*-distribution
actually calculated with the Two-Equation model in Figure.
4.36, paée 161. It is the convective transport of 2* which
prlays an important role in the determination of the flow
properties and which results in more physically correct pre-
dictions with the Two-Equation model.

Taking a second look at the respective stfeam
function plots one notices a difference in the geometry of
the upstream and downstream separation bubbles for the
different models. The predicted dimensions decrease from
PML to TKE to Two-Equation model. Table 4.3 gives the
approximate values for the individual cases. This decrease
certainly is associated with the hicher turbulence levels of
the respective models. |

Generally the top separatipn region seems somewhat
smaller in its vertical extent than one would expect.
Besides this possibly being the result of the problem men-
tioned in Section III of this chapter, it also seems logical
that in an atmospheric boundary layer where the ratio of the
step height to boundary layer thickness, i.e., h*/G* is
small, smaller separation regions should occur than those

reported for most wind tunnel experiments where h*/8* is
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GEOMETRIES OF SEPARATION REGIONS FOR DIFFERENT

TABLE 4.3

TURBULENCE MODELS

Model Xg yR Xp
PML 1.2 0.6 2;2

TKE 1.0 0.6 1.4
Two-Equation 0.6 0.4 1.2
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usually large. More on tﬁis topic Qill be found in the |
parametric study given in the next section.

Let us now turn to a closer examination of the tur-
bulence kinetic energy contours for the TKE and Two-Equation
model ig Figures 4.33 and 4.35, pages-158 and 160. These

can readily be related to the more commonly used turbulence

intensities

X ) 1/2 |

ar = [g(u*'z + VETZ 4 w*'2)] u* (4.74)
by

(4.75)
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In the Two-Equation model the energy contours reveal quite
realistically that the shear layer, which grows from the
corner of the step, generates high energy levels. These are
carried downstream giving rise to comparatively high turbu-
lence intensities in the downstream region of the reattach-
ment point. This downstream convection of ehergy together
with the increase in the level of length scale‘(Figufe 4,36,
page 161) conspire to produce particularly high turbulent
viscosity in the region behind reattachment.

This phenomenon is also visible in the TKE model k*-
contours. However, the intensities in the downstream
reattachment region are considerably smaller because of the

inadequate prescription of the length scale, thus resulting
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in the low p{ predictions there, as already seen in Figure
4.37, page 162.

Another yet more eye-catching difference is the d4if-
fusion of k* in the TKE model as compared to the Two-
Equation model, especially in the downstream flow region.
Experience tells us that turbulent shear layers usually
spread at a rate x™ with m depending on the type of flow.
Likewise should the shear layer originating from the step
corner spread out and with it the turbulence kinetic energy
or turbulence intensity. Again this behavior is only in the
Two-Equation model described correctly.

In the flow region ahead of the step the turbulent
intensities do not differ that greatly for the two models.
Qualitatively the predictions seem to agree quite well with
the experimental findings of Taulbee and Robertson [45, 46]
who report that the turbulent intensities increase strongly
toward the front separation point. Primarily there is a
spreading of the zone over which the higher intensities
extend rather than a significant increase in magnitude. The
peak intensities occur appreciably outside the dividing
streamline, which defines the outer edge of the front sepa-
ration bubble. Outside this peak the turbulence decreases
with z* as it does in any boundary layer. Inside the sepa-
ration bubble the turbulence decreases with distance to an
essentially small constant value. The authors point out,
however, that the peak intensities and shear levels reached

here are still considerably less than values typical of
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those in fully developed jets or free shear layers, iike the
one originating from the step corner (compare with Figure
4.35, page 160).

Finally, to complete the presentation of the
dependent variables involved in the calculation, a vorticity
contour plot determined from the Two-Equation model is given
in Figure 4.39. It shows very clearly the downstream
influence of the step on the vorticity pattern, the creation
of a highly disturbed region with steep vorticity gradients
not only normally to the wall but also in the flow direction.
The outer edge of this disturbance or wake region can be
approximated as indicated by the dotted line, which, for
this particular flow case, is roughly of the form z* =
(x*/h*) 06

It is also interesting to note that apart from this
region and the immediate upstream vicinity of the step, the
constant vorticity lines follow quite closely the streamline
pattern so that the application of the "Frozen Vorticity
Theory" of Taulbee and Robertson [45, 46] to-the current
flow problem seems to be a reasonable assumption in this
flow region. "Frozen Vorticity" assumes that for certain
flow situations where boundary changes and effects occur so
suddenly that viscosity or turbulent mixing do not have any
time to act on the flow, the diffusion of vorticity can be
neglected. The vorticity is then fluid bound, i.e.,
"frozen" to the stream function and its distribution fixed

as given by the approach flow. The governing stream
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function equation (4.10) would reduce under these circum-

stances to
V2YP* = —pryk (Y*) (4.76)

To summarize the key results of this paragraph, one
might say that all three turbulence models, PML, TKE, and the
Two=-Equation model, yield quite realistic streamline patterns
and velocity distributions. 1In the prediction of turbulent
flow properties like k* and t* the Two-Equation model was
found to be superior. The inadequacies of the PML and TKE
model are that they either neglect (PML) or do not ade-
guately account for (TRE) the convective transport of
turbulence guantities which in the current flow problem is
especially important as the step strongly influences the

downstream flow region.

Effect of Variation of the Parameters of the

Approaching Wind

A parametric study was conducted utilizing the Two-
Equation model to assess the influence of the parameters of
the approaching wind profile, u} and z%*, as well as the step
height h* on the solution.

Before proceeding to the calcﬁiation and discussion
of selected flow solutions it is useful to study the
dimensionless aspects of the flow problem.

A nondimensional form of the governing equations was

obtained by adopting the step height h* as the characteristic



1

172

length and the friction velocity u¥ as the characteristic

velocity.
Introducing

_ w*h* - _ Y*
w ux ! v = p*uXh¥

_ k* . _ 2,*
k = u:,z r 2 - ‘F

_ x* . _ Z*
X=q% 7 Z = pF

2% p*ukh*

29 = h-—* H Re* = -—-ﬁ—— (4.77)

The effective viscosity can then be nondimension-

alized as

Megs 1 i
~ e -
Heff = 5¥uih* ~ Re, & p¥uih¥ (4.78)

which yields for the Prandtl=-Kolmogorov formulation of the

turbulent viscosity

- 1

1/2
Meff Re,

+ Cpk %2 (4.79)

The resulting nondimensional form of the governing equations

then is:

Stream function equation (continuity)

3%y , 3%y

%2 T 3zz = W (4.80)
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Vorticity transport equation (momentum)

dw , = dw 9 {39 - .
TV 5§{§§(ueffw)] * 5z

U 5% z
with
- 32 du 9w 2 Su 92 . oW
Sp = 2[-5x5z[ueff[-§ =35z T axz[ueff 3z ~ 5zz|Yeff 3x
(4.81b)

Turbulence kinetic energy transport

|

— 3k , = 3k _ 3| Meff ak] 3 | Meff 3k
gk, gk 0| eff 3k| , 3| "eff + 8 (4.82a)
X 3z X0y off 3§J 32 O) off 3z k
with
. =2 2) e = 2 3/2
_ au)® | (aw du  dw)® o kT
SO [ 7 R A (4.820)

(
= 38 ., — 3% 3| Meff 232 3| Yeff 51
0224+ wdd o &2 2 o4 ot 4+ s (4.83a)
X 92 axlcl,eff ax] az\oheff 8zJ )
with
- 2 —_ 2 - 2
_ L1/2 _ . au ow Ju oW
SE = k CS 2ut[[§;] + [ng ] + [3? + 3%} (4.83Db)

After nondimensionalizing also the boundary conditions,

e.g., the inlet conditions in the four variables Yy, w, k and

2
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Y = %[(z + zo)[zn ?-—";TZ-"— - 1] +zo] //'
= - 1 _ 3%y
W=z F 20) X2

Py
]

k(z + 2p) (4.84)

one finds that the problem reduces from the three
dimensional parameters uj}, 2z} and h* to the two dimensionless
groups 2z, and Re,.

However, in view of Equation 4.72 and the high
Reynolds number usually occurring in atmospheric flows,

where

1
Re, - ¥t (4.85)

the flow problem becomes essentially independent of Reynolds

number. Thus, the only remaining significant parameter is 2z,.
In the subsequent study calculations were carried

out for the following five values of z,.

(1) zo = 0.005

(2) z¢ = 0.020

(3) zo = 0.045

(4) z, 0.075

(5) zo = 0.100
The resulting Y-, k= and ¢~distributions for the

cases 1, 3 and 5 are shown in Figures 4.40 throuah 4.42.
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Comparing the various streamline patterns one
notices that the shapes of the upstream and downstream
separation regions vary with z,. While the top reattachment
length Xp changes substantially, the front separation
distance Xg varies only slightly. Figures 4.43 and.4.44
reveal the geometry of the separations and reattachments as
s’ YR and Xge
The reattachment length x

characterized by the distances x
R was found to increasg
with decreasing z,, indicating that a smoother\surface or
larger step height would delay reattachment of the flow on
top of the step. The feason for this is readily understood
by looking at the respective TKE- and f%-contour plots in
Figures 4.41 and 4.42. For smaller zolthe.turbulence
intensities and length scale are seen to decrease in the up-
stream and downstream vicinity of the upper step corner.
This is a result of the higher flow acceleration created by
the displacement of a fuller approach velocity profile con-
taining higher momentum near the wall (see also.Figure
4.45(b)). Acceleration in the flow is .generally known to
diminish turbulence production and to reduce the turbulence
length scale or typical eddy size by means of vortex
stretching. These lower turbulence intensities together
with the reduced length scale lead to a lower effective
viscosity or shear on top of the step, delaying reattachment
and causing Xp t0 increase.

For the forward separation region the situation is

somewhat different. Except for a small region.in the lower
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zy range, the bubble is found to grow in size with in-
creasing surface roughness parameter, even though the
maximum vorticity occurring inside the bubble decreases, as
shown in Figure 4.44(b). In the z,-range under conside-~
ration where the vorticity decreases only slightly the
growth of the bubble seems to be influenced largely by the
growth of the turbulence length scale. In the lower z;-
range mentioned above, however, the steep decline of
vorticity seems to be more influencial than the growth of
the length scale resulting in a partial reduction of bubble
size.

Taulbee and Robertson [46] presented the results of
their investigation for smooth walls in dependence of the
ratio of step height to boundary layer thickness h*/§*,
This ratio is small for most atmospheric boundary layer
flows and changes only little; however, it is similar to the
ratio h*/z%* used here, in the sense that both parameters &%
and z% characterize the nature of the approaching velocity
profile in relation to the height of the obstruction.
Although a direct comparison with the above results is not
possible because the functional relation between §* and z:
is unknown, one can nevertheless compare common trends.

Taulbee and Robertson's results predict for

h* .
F=1.8"*XR=3.8

and for a step height a fourth of the above:
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*
B = 0.45 > x = 2.3
For the present study the surface roughness of z, = 0.005
predicts the same reattachment length as h*/é6* = 1.8, i.e.,

= 0.005 ~» Xp = 3.8

e

and for a fourth of the step height we get

*
20 _
W— 0.02 » XR = 2.35

Carrying on the comparison in this fashion for several other
step heights, one finds the predictions for the reattachment
length Xp in almost exact agreement with the results of [46].

Proceeding the same way with dimensions x_. and YR of the

S
front separation bubble, however, agreement is not as good,
with the predictions of the Two-Equation model being con-
sistently lower than Taulbee and Robertson's results. As
already noted during the comparison of the three turbulence
models (see Table 4.2, page 138) this is possibly a con-
sequence of the higher turbulence and turbulent viscosity in
the k-2-model and could be adjusted by a redetermination of
the empirical constants.

More information is contained in the gradients of
the stream function, i.e., the velocity distributions.
Figure 4.45, page 188, indicates how the presence of the
step affegts the horizontal velocity profile at x = 0.0 for

the different roughness parameters. The profile with the
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strongest velocity gradient at the wall and the highest">
momentum near_the surface produces the largest velocit&is -
overshoot. This is easily pe:ceived because for the smaller
z9 the flow carries more massfnear ihé wall, which is _
suddenly displaced by the step, creating a locally accelefe3
ated flow region. This result was also obtained in the |
boundary layer analysis. The overshoot is in accordance
with the lower shear predictions and longer reattachment
lengths for the smaller 2,.

For completeness, Figure 4.46 shows a set of
velocity profiles over the entire flow region for case 1
with z, = 0.005. |

The turbulence kinetic energy contours reveal that
for increasing z, the turbulence energy levels in the shear
layer growing from the step corner rise accordingly. Like-
wise, the turbulent viscosity and with it the turbulent
shear stress increases in unison. The same trend becomes
apparent by looking at Figure 4.47 which, for eésier
comparison, shows the individual turbulence prqfiles
together at the x = 3.0 downstream location. Oﬁce more this
gives the reason; why for smaller surface rougﬁnesses bigger
overshoot and larger downstream separation regions. are
expected.

The following Figure 4f48 gives again a complete set
of turbulence intensity profiles over the whole flow fielth

for case 1 with zy, = 0.005. As already pointed out in the
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for u,= 0.75 (w/sec)

0 (w/sec)

Scals
10

FYNE U WY S YN S T |

1.0

0.0

-1.0

-2.0

Horizontal Distance x

(continued)

Figure 4.46.



9.0

Height 2

o
YR

Figure 4.47.

= :
B
o :
i
4
i
-
= \
o ;
& H
S
L ;

P e v — — —— — —— T — — — ——— w— U —— ——— t—

4
=

e oo g o o’ i

—

2o = 0.005 =
zo = 0.065

z, = 0.100

ot

" ——

ST

P T

g , *

o

Turbuiéncé“kinetiC'ehergy profiles at x

for different z,.

-

na

12 16

k4

PR I ST
- O 32 fe

‘Turbulence Kinetic Energy 'k

L2

195

3.0



Height =

(a)

———-"' -
- ——
———’-—-

-

-
/

-
’/
"
I/

1
0
=10.0 -8.0 -6.0 -4.0 -2.0 ~-1.0 0.0
Horizontal Distance x
Figure 4.48. Turbulence kinetic energy distribution for z, = 0.005;
(a) ahead of the step,

(b) in the vicinity of the step.

961




(b)

Scale

°2 3ydrem

2.0

1.0

0.0

-100

Horizontal Distance x

(continued)

Figure 4.48.

197



198
previous sections, these profiles essentially agree with the

findings of Taulbee and Robertson [46].

e

The turbulence length scalé plots exposefhow
different the %-distributions actuélly can becomé from the
linear variation originally assumea in Equations;4.36 and
4.47. ?pgmdpypst§eam influence og the step on tﬁefturbg-
lence stfuéturé'iserécogﬁized by #he growth in Z.indicaﬁing
an increase of typical eddy size in the spreading Shear
layer. To facilitate a comparisoﬁ between the vérious
roughness parameters and their effects on the tuébdlénce
structure, Figure 4,49 shows the-aaprofiles at x?= 3.0 for
the different z;. ' The profiles have been_nondiménsiénalized
with Equation 4247 to allow easy comparison-withéthe linear
distributionoﬁilniaccordance with earlier results the
rougher surfaceé produce sheé¥ 1ayers with sizea&le in-
creases in the typical'eddy size, thch through éqdation
4.16 augment‘tﬁe turbuient viscosity and tend toésho:ten the
upper séﬁE}atiOn;fégidnS5 . For-+smail zg, howeverf the % pre-
dictiogglare below those given in Equation 4.47,; hence
leading to higher overshoot and delayed reattachment.

From®the four variables w, ¥, k and £, the vorticity
and the zy-influence on it has not yet been discussed.
BegaLlL Eigu:e:4.39, page l70,_showed~;hg_yor§icity_contqurs
for zo = 0.045. It was pointed out thét’éiafétﬁfbénde
region with locally high streamwise vorticity gradients is
formed and spreads downstream parabolically. Figure 4.50

shows how a surface roughness change affects the extent of
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this region of high vorticity. It is seen that a z,-
increase generates a wider spread, possibly as a consequence
of the changes in the turbulence structure (larger eddies)
of the shear layer, discussed in the previous paragraph.

Concluding this parametric investigation, one may
summarize the results by stating that in the downstream flow
région an increase in 2z givés rise ﬁo higher turbulence
levels in the shear iayer originating from the step corner.
This, in turn, results in higher shear stress leading to
fast reattéchment. The typical eddy size in the shear layer
increases with z, and causes rapid spreading of a region of
high streamwise vorticity gradients.

‘In the upstream flow region changes in z, have only
moderate influence on the flow parameters. Except for very
small surface roughnesses, the front separation bubble grows

in size for increasing zy.
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